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UNIT – I 

RANDOM EVENTS AND RANDOM VARIABLES 

 

1. Random Events 

 

1.1.1. Preliminary 

 Probability theory is a part of mathematics which is useful in discovering and 

investigating the regular features of random events. The following examples show what is 

ordinarily understood by the term random event.  

 

Example 1 

Let us toss a symmetry coin the result may be either a head or a tail. We cannot predict the 

result. It depends various causes the initial velocity of the coin, the initial angle of through and 

the smoothness of the table on which the coin falls, but we cannot control all these parameters. 

The result of a coin tossing head or tail is a random event. 

If we perform a long series of tossing, the no.of times heads occur is approximately 

equal to the no.of times tails appear. 

Let 𝑛 denote the no.of all our tosses and 𝑚 denote the no.of times heads appears. 

 Frequency of appearance of heads =
𝑚

𝑛
 

 Frequence of appearance of tails =
𝑛−𝑚

𝑛
  

Suppose we tossed a coin 4040 times and obtained heads 2048 times. 

 The ratio of heads =
2048

4040
= 0.50693 

Suppose we tossed 24000 times and obtained heads 12012. 

 Ratio of heads =
12012

24000
= 0.5005 
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Clearly frequency oscillate about the number 0.5. 

 

Example 2. 

 Let us consider the number of births of boys and girls in Poland in the year 1927 to 

1932 

Year in 

Birth 

No.of Birth 
Total no.of 

Birth 
Frequency of Birth 

Boys 𝑚 Girls 𝑓 𝑚 + 𝑓 Boys 𝑃1 Girls 𝑃2 

1927 496,544 462,189 958,733 0.518 0.482 

1928 513,654 477,339 990,993 0.518 0.482 

1929 514,765 479,336 994,101 0.518 0.482 

1930 528,072 494,739 1,022,811 0.516 0.484 

1931 496,986 467,587 964,573 0.516 0.484 

1932 482,431 452,232 934,663 0.516 0.484 

Total 3,032,452 2,833,422 5,865,874 0.517 0.483 

 In this table 𝑚 and 𝑓 denote respectively the no.of birth of boys and girls in particular 

years. 

𝑃1 =
𝑚

𝑚+𝑓
  

𝑃2 =
𝑓

𝑚+𝑓
  

The  values of 𝑃1 oscillate about the no. 0.517 and the values of 𝑃2 oscillate about the 

no. 0.483. 

 

Example 3. 

 We throw a dice. As a result of a throw one of the faces 1,2…… ,6 appears. 

 The appearance of any particular face is a random event. 

 Clearly, the frequency of this event will oscillate about the number 
1

6
. 
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1.1.2. Random events and operations performed on them 

 

 We now construct the mathematical definition of a random event. 

Example 1. 

Suppose that when throwing a die we observe the frequency of the event, an even face. 

Let elementary event 𝐸 = {𝑒𝑖/𝑖  = 1 𝑡𝑜 6} 

The random event an even face will appear in 𝑒2, 𝑒4, 𝑒6 

 ∴ 𝐴 = {𝑒2, 𝑒4, 𝑒6} 

Find the random event which not contain face = 1(𝑖. 𝑒. , 𝑒2) 

The random event 𝐴 = {𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6} which contains 5 elements. 

 

Definition. 

 Every element of the Borel field ℤ of subsets of the set 𝐸 of elementary events is called 

a Random event. 

 

Definition. 

 The event containing all the elements of the set 𝐸 of the elementary events is called the 

sure event. 

 

Definition. 

 The event which contains no elements of the set 𝐸 of elementary events is called the 

Impossible event. 

 The impossible event is denoted by (0). 
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Definition.  

We say that Event 𝑨 is contained in event 𝑩 if every 

elementary event belonging to 𝐴 belongs to 𝐵.  

 We write 𝐴 ⊂ 𝐵. 

 In figure 1.2.1., where square 𝐸 represents the set of elementary 

events and circles 𝐴 & 𝐵 denote subsets of 𝐸. Clearly 𝐴 ⊂ 𝐵. 

 

Definition. 

 Two events 𝐴 & 𝐵 are equal if 𝐴 is contained in 𝐵 & 𝐵 is contained in 𝐴.  

We write 𝐴 = 𝐵. 

 

Properties of Borel field (Z) 

Property 1.The set 𝑍 of random events contains as an element the whole set 𝐸. 

Property 2.The set 𝑍 of random events contains as an element the empty set (0) 

                 i.e., 𝑍 contains sure event and impossible event. 

 

Definition. 

Two events 𝐴 and 𝐵 are exclusive if they do not have any common element of the set 𝐸. 

 

Definition. 

 Let 𝐴1, 𝐴2, 𝐴3, …… be a finite or denumerable sequence of random event. The event 𝐴 

which contains elementary events, which belongs to atleast one of the events 𝐴1, 𝐴2, … . . 𝐴 is 

called the alternative (or sum or union) of the events 𝐴1, 𝐴2, 𝐴3, … .. 

Figure 1.2.1 
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 We write, 

  𝐴 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ …… ..  

                                   (or) 

  𝐴 = 𝐴1 + 𝐴2 +⋯…. 

                                   (or) 

  𝐴 = ∑ 𝐴𝑖𝑖∈ . 

 

Example 2. 

  

 

On this figure, square E represents the set of elementary events and circles 

𝐴1, 𝐴2, …denote three events; he shaded area represented alternative 𝐴1 + 𝐴2 + 𝐴3. 

 

Property 1.2.3 

If a finite or denumerable no. of events 𝐴1, 𝐴2 and so on belonging to 𝑍, then their 

alternative also belongs to 𝑍. 

 

Definition. 

 The random event 𝐴 containing those and only those elementary events which 

belonging to 𝐴1 but do not belong to 𝐴2 is called the difference of the events 𝐴1 and 𝐴2. 

 We write 𝐴 = 𝐴1 − 𝐴2 
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Property 1.2.4. 

If events 𝐴1 and 𝐴2 belong to 𝑍, then their difference also belongs to 𝑍. 

Example 3. 

Suppose we consider the no.of children in a group of families. Let 𝐸 =

{𝑒0, 𝑒1, …… , 𝑒𝑛}. Consider the event 𝐴 that a family chosen at random has only one child and 

the event 𝐵 that the family has atleast one child. 

 i.e., 𝐴 = {𝑓𝑎𝑚𝑖𝑙𝑦 𝑤𝑖𝑡ℎ 𝑜𝑛𝑒 𝑐ℎ𝑖𝑙𝑑} 

       𝐵 = {𝑓𝑎𝑚𝑖𝑙𝑦 𝑤𝑖𝑡ℎ 𝑎𝑡𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐ℎ𝑖𝑙𝑑} 

Clearly, 𝐴 ⊆ 𝐵 and 

Alternative 𝐴 + 𝐵 = 𝐵 

∴ 𝐸 has 𝑛 + 1 elements 

Then 𝐴 = {𝑒1} & 𝐵 = {𝑒1, 𝑒2, …… , 𝑒𝑛} 

  𝐴 − 𝐵 = 0 

  𝐵 − 𝐴 = {𝑒2, 𝑒3, …… , 𝑒𝑛} 

i.e., 𝐵 − 𝐴 is the event that the family has more than one child. 

 

Definition. 

 The event 𝐴 contains elements which belong to all the events 𝐴1, 𝐴2, … .. is called the 

product (on intersection) of these events. We write 

 𝐴 = 𝐴1 ∩ 𝐴2 ∩ …… . (𝑜𝑟) 𝐴 = 𝐴1𝐴1…… . . (𝑜𝑟)𝐴 = ∏ 𝐴𝑖𝑖 . 

 

Property 1.2.5. 

If a finite (or) denumerable no. of events 𝐴1, 𝐴2, …… belong to 𝑍, then their product 

also belongs to 𝑍. 
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Example 4. 

 Consider the random event 𝐴 that a form chosen at random has atleast one horse & one 

plow, with the additional condition that the maximum no. of plows as were as the maximum 

no. of horses are two. Consider also the event 𝐵 that on the form these is exactly one horse and 

at most one plow. Find the product of events 𝐴 and 𝐵. 

Solution. 

 𝐸 = {𝑒00, 𝑒01, 𝑒02, 𝑒10, 𝑒11, 𝑒12, 𝑒20, 𝑒21, 𝑒22} where the 1st index denoting the no. of 

horses and the 2nd the no. of plows. 

 𝐴 = {𝑒11, 𝑒12, 𝑒21, 𝑒22} 

 𝐵 = {𝑒11, 𝑒10} 

 The product 𝐴 ∩ 𝐵 = {𝑒11} 

 The event 𝐴 ∩ 𝐵 occurs iff on the chosen form there is exactly one horse and exactly 

one plow. 

 

Definition 

 The difference of events 𝐸 = 𝐴 is called the complement of the event 𝐴 and is denoted 

by 𝐴̅. 

 

Example 5. 

 Suppose we have a no. of electric light bulbs. We fix a certain value to such that if the 

burns out in a time shorter than to, we consider it to be defective. Find the random event that 

we select a good bulbs. 

Solution. 

 Consider 𝐸 as all the electric light bulbs. Consider the random events A = defective 

bulb 

i.e., 𝐴𝑆 = {𝑏𝑢𝑙𝑏 𝑏𝑢𝑟𝑛𝑠 𝑜𝑢𝑡 𝑖𝑛 𝑎 𝑡𝑖𝑚𝑒 𝑠ℎ𝑜𝑟𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡𝑜} 

𝐴̅ = 𝐸 − 𝐴  
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={bulbs that glows for a time no shorter than to} 

i.e. 𝐴̅ is a not defective 

i.e., �̅� is the random event to select good bulb. 

 

Definition. 

 A set 𝑍 of subsets of the set 𝐸 of elementary events with properties 1 to 5 is called a 

Borel field of events and its elements are called random events. 

 i.e. (i) 𝐸, (0) belongs to 𝑍 

      (ii) 𝐴1 + 𝐴2 +⋯… ∈ 𝑍 

      (iii) 𝐴1 ∩ 𝐴2 ∩ ……∩∈ 𝑍 

      (iv) 𝐴1 − 𝐴2 −⋯… ∈ 𝑍 

 

Definition. 

 The sequence {𝐴𝑛} (𝑛 = 1,2,… . . ) of events is called non-increasing if for every 𝑛 we 

have 𝐴𝑛 ⊃ 𝐴𝑛+1. 

 

Definition. 

 The product of a non-increasing sequence of events {𝐴𝑛} is called the limit of this 

sequence. 

Write 𝐴 = ∏ 𝐴𝑛 = lim
𝑛→∞

𝐴𝑛𝑛≥1 . 

 

Definition. 

 The sequence {𝐴𝑛}(𝑛 = 1,2,… . . ) of events is called non-decreasing if for every 𝑛 we 

have 

 𝐴𝑛+1 ⊃ 𝐴𝑛 
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The sum of a non-decreasing sequence {𝐴𝑛} is called the limit of this sequence. 

 We write, 

  𝐴 = ∑ 𝐴𝑛𝑛≥1 = lim
𝑛→∞

𝐴𝑛 

 

1.1.3. The system of axioms of the theory of probability 

 

Axiom I: To every random event A there corresponds a certain number 𝑃(𝐴) called the 

probability of 𝐴, which satisfies the inequality 0 ≤ 𝑃(𝐴) ≤ 1. 

 

Example 1. 

 Suppose there are only black balls in an urn. Let the random experiment consist in 

drawing a ball from urn. Drawing the black ball out of the urn is a sure event. 

 

Axiom II: The probability of sure event equals one. 

     i.e., 𝑃(𝐸) = 1. 

 

Example 2. 

 Find the frequency of face 6 and face 2 in a dice. 

Solution. 

Let A = getting face  

  B = getting face 2 

 ∴ 𝑃(𝐴) =
1

6
 and 𝑃(𝐵) =

1

6
 

Probability of getting either face 6 or face 2 = 𝑃(𝐴) + 𝑃(𝐵) 

      =
1

6
+

1

6
 



 

 

10 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

      =
2

6
 

      =
1

3
 

∴ The frequence of getting either face 6 or face 2 =
1

3
 

 

Example 3. 

 If a card is selected from a deck of 52 cards many times over. Find the frequency of 

(i) Appearance of ace 

(ii) Appearance of spade 

(iii) Appearance of ace or spade 

Solution. 

 Let A be the event of getting ace 

 Let B be the event of getting spade 

(i) Let 𝑃(𝐴) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑎𝑐𝑒 

=
4

52
  

(ii) Let 𝑃(𝐵) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡 𝑜𝑓 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑠𝑝𝑎𝑑𝑒 

=
13

52
  

(iii) Let 𝑃(𝐴 ∪ 𝐵) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑎𝑐𝑒 𝑜𝑟 𝑠𝑝𝑎𝑑𝑒 

∴ 𝑃(𝐴 ∩ 𝐵) =
1

52
  

 ∴ 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) 

   =
4

52
+
13

52
−

1

52
 

   =
4+13−1

52
 

   =
16

52
=

8

26
=

4

13
. 
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Axiom III: The probability of the alternative of a finite or denumerable no. of pairwise 

exclusive events equals the sum of the probabilities of these events. 

 Thus, if We have a finite or countable sequence of pairwise exclusive events {𝐴𝑘}, 𝑘 =

1,2,3……, then axiom 3 the following formula holds: 

 𝑃(∑ 𝐴𝑘𝑘 ) = ∑ 𝑃(𝐴𝑘)𝑘 . 

In particular, if the random event contains a finite or countable number of elementary events 

𝑒𝑘 and 𝑒𝑘 ∈ 𝑍(𝑘 = 1,2,… )  

 𝑃(𝑒1, 𝑒2, …… ) = 𝑃(𝑒1) + 𝑃(𝑒2) + ⋯… .∀𝑒𝐾 ∈ 𝑍,𝐾 = 1,2,3, …… 

Note. 

1. Axiom 3 is called the countable (or complete) additivity of probability. 

2. 𝑃 is said to be probability if it satisfying axiom 1, axiom 2, axiom 3. 

3. P(A) satisfying Axiom 1,2,3 is normal, non-negative and countably additive measure 

on the Boret field 𝑍 of subsets of 𝐸 

 

Theorem 1.1. 

 Let 𝐴 and 𝐵 be two arbitrary random events, exclusive or not. Then 𝑃(𝐴 ∪ 𝐵) =

𝑃(𝐴) + 𝑃(𝐵) = 𝑃(𝐴 ∩ 𝐵) 

Proof. 

 The set 𝐴 ∪ 𝐵 and 𝐵 can be written 𝐴 ∪ 𝐵 = 𝐴 ∪ (𝐵 − 𝐴𝐵)  → (1) and 𝐵 = 𝐴𝐵 ∪

(𝐵 − 𝐴𝐵)    → (2) 

 Here, in (1) & (2) 

 𝐴 and (𝐵 − 𝐴𝐵), 𝐵 and (𝐵 − 𝐴𝐵) are exclusive. 

∴ By Axiom (3)  

(1) ⇒ 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵 − 𝐴𝐵) → (3)  

𝑃(𝐵) = 𝑃(𝐴𝐵) + 𝑃(𝐵 − 𝐴𝐵)   

𝑃(𝐵 − 𝐴𝐵) = 𝑃(𝐵) − 𝑃(𝐴𝐵)  → (4)  

Sub (4) in (3), 
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 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴𝐵) 

Remark.  

 Let 𝐴1, 𝐴2, … . . , 𝐴𝑛 where 𝑛 ≥ 3, be arbitrary random events 

𝑃(∑ 𝐴𝐾
𝑛
𝑘=1 ) = ∑ 𝑃(𝐴𝐾)

𝑛
𝑘=1 − ∑ 𝑃(𝐴𝑘1 ∩ 𝐴𝑘2) +

𝑛
𝑘1,𝑘2=1
𝑘1<𝑘2

∑ 𝑃(𝐴𝑘1 ∩ 𝐴𝑘2 ∩ 𝐴𝑘3) −
𝑛
𝑘1,𝑘2,𝑘3=1
𝑘1<𝑘2<𝑘3

⋯… . .+(−1)𝑛+1 𝑃(𝐴𝑘1𝐴𝑘2…… . . 𝐴𝑛)  

 

Theorem 1.2. 

 If the events 𝐴1, 𝐴2, …… exhaust the set of elementary events 𝐸, 𝑃(∑ 𝐴𝐾𝑘=1 ) = 1 

Example 4.  

 Let the set of all non-negative integers form the set of elementary events. Let (𝑒𝑛) be 

the event of obtaining the number 𝑛 where 𝑛 = 0,1,2, … .. suppose that (𝑒𝑛) =
𝐶

𝑛!
 , where 𝐶 is 

a constant. Prove that 𝐶 = 𝑒−1. 

Solution. 

 Let 𝐸 = 𝑍+ ∪ {0} 

 𝑍 = {𝑒0, 𝑒1, 𝑒2……} where (𝑒𝑖) be the event of obtaining the number 𝑖 where 𝑖 =

0,1,2,3, …… 

 Given 𝑃(𝑒𝑛) =
𝐶

𝑛!
 

 𝑃(∑ 𝑒𝑛
∞
𝑛=0 ) = ∑ 𝑃(𝑒𝑛)

∞
𝑛=0  

   = ∑
𝐶

𝑛!
∞
𝑛=0  

   = 𝐶 ∑
1

𝑛!
∞
𝑛=0  

We know that, 

 𝑃(∑ 𝑒𝑛
∞
𝑛=0 ) = 1  & ∑

1

𝑛!
= 𝑒∞

𝑛=0  

 𝑃(∑ 𝑒𝑛
∞
𝑛=0 ) = 𝐶 ∑

1

𝑛!
∞
𝑛=0   
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 ⇒ 1 = 𝑐𝑒 

 𝑐 =
1

𝑒
 

 ∴ 𝐶 = 𝑒−1. 

 

Theorem 1.3. 

 The probability of the impossible event is zero. 

Proof. 

 For every random event 𝐴, we have 

  𝐴 ∪ 𝐸 = 𝐸 

 If 𝐴 is the impossible event 𝐴 = (0) 

 Then, 𝐴 and 𝐸 are exclusive 

 From axiom (3) 

  𝑃(𝐴 ∪ 𝐸) = 𝑃(𝐴) + 𝑃(𝐸) 

  𝑃(𝐸) = 𝑃(𝐴) + 𝑃(𝐸) 

  𝑃(𝐴) = 𝑃(𝐸) − 𝑃(𝐸) 

  𝑃(𝐴) = 0 

  ∴ 𝑃((0)) = 0 

 

Theorem 1.4. 

 Let {𝐴𝑛}; 𝑛 = 1,2,3, …… be a non-increasing sequence of events and let A be their 

product. Then 𝑃(𝐴) = 𝑙𝑖𝑚
𝑛→∞

𝑃(𝐴𝑛). 

Proof. 

If the sequence {𝐴𝑛} is non- increasing,then for every 𝑛 we have 

  𝐴𝑛 = ∑ 𝐴𝐾𝐴𝐾+1̅̅ ̅̅ ̅̅ ̅∞
𝑘=𝑛 + 𝐴 
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sWe know that, 

  𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) 

  P(𝐴𝑛) = 𝑃(∑ 𝐴𝐾𝐴𝐾+1̅̅ ̅̅ ̅̅ ̅∞
𝑘=𝑛 ) + 𝑃(𝐴) − 𝑃((∑ 𝐴𝐾𝐴𝐾+1̅̅ ̅̅ ̅̅ ̅∞

𝑘=𝑛 )𝐴) 

  P(𝐴𝑛) = 𝑃(∑ 𝐴𝐾𝐴𝐾+1̅̅ ̅̅ ̅̅ ̅∞
𝑘=𝑛 ) + 𝑃(𝐴) − 𝑃(∑ 𝐴𝐾𝐴𝐾+1̅̅ ̅̅ ̅̅ ̅∞

𝑘=𝑛 𝐴)  → (1) 

By axiom (III), 

 𝑃(∑ 𝐴𝐴𝐾𝐴𝐾+1̅̅ ̅̅ ̅̅ ̅∞
𝑘=𝑛 ) = 0   (∵ ∀𝑘 the event 𝐴𝐴𝐾𝐴𝐾+1̅̅ ̅̅ ̅̅ ̅ is the impossible event) 

(1) ⇒ 𝑃(𝐴𝑛) = 𝑃(∑ 𝐴𝐾𝐴𝐾+1̅̅ ̅̅ ̅̅ ̅∞
𝑘=𝑛 ) + 𝑃(𝐴) 

P(𝐴𝑛) = ∑ 𝑃(𝐴𝐾𝐴𝐾+1̅̅ ̅̅ ̅̅ ̅∞
𝑘=𝑛 ) + 𝑃(𝐴) 

Taking limit 𝑛 → ∞ on both sides. 

  lim
𝑛→∞

𝑃(𝐴𝑛) = 𝑙𝑖𝑚
𝑛→∞

(∑ 𝑃(𝐴𝐾𝐴𝐾+1̅̅ ̅̅ ̅̅ ̅) + 𝑃(𝐴) ) ∞
𝑘=𝑛  

The series ∑ 𝑃(𝐴𝐾𝐴𝐾+1̅̅ ̅̅ ̅̅ ̅∞
𝑘=1 )  is convergent being a sum of non-negative terms whose partial 

sums are bounded by one. 

∴ 𝑙𝑖𝑚
𝑛→∞

𝑃(𝐴𝑛) = 𝑃(𝐴) 

 

Theorem 1.5. 

 Let {𝐴𝑛}, 𝑛 = 1,2,3, ……. be a non-decreasing sequence of the events and let 𝐴 be the 

alternative, then we have 𝑃(𝐴) = 𝑙𝑖𝑚
𝑛→∞

𝑃(𝐴𝑛) 

Proof. 

Consider, the sequence of the events {𝐴𝑛̅̅̅̅ } which are the complements of the event 𝐴𝑛. 

By our assumption thtat {𝐴𝑛} is non-decreasing 

 ⇒ {𝐴𝑛̅̅̅̅ } is non-increasing sequence 

Let 𝐴̅ be the product of events 𝐴𝑛̅̅̅̅ , ∀𝑛 

Then by the  theorem 1.3.4, 

 𝑃(𝐴̅) = 𝑙𝑖𝑚
𝑛→∞

𝑃(𝐴𝑛̅̅̅̅ )      → (1) 
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Thus, 𝑃(𝐴) = 1 − 𝑃(𝐴̅) 

  = 1 − 𝑙𝑖𝑚
𝑛→∞

𝑃(𝐴𝑛̅̅̅̅ )    (𝐹𝑟𝑜𝑚 (1)) 

  = 1 − 𝑙𝑖𝑚
𝑛→∞

𝑃(1 − 𝐴𝑛)  

  = 1 − 𝑙𝑖𝑚
𝑛→∞

[𝑃(1) − 𝑃(𝐴𝑛) ]  

  = 1 − 1 + 𝑙𝑖𝑚
𝑛→∞

𝑃(𝐴𝑛)  

∴ 𝑃(𝐴) = 𝑙𝑖𝑚
𝑛→∞

𝑃(𝐴𝑛)   

 

Theorem 1.6. 

 If the events 𝐴 and 𝐵 satisfy the condition 𝐴 ⊂ 𝐵 then  𝑃(𝐴) ≤ 𝑃(𝐵). 

Proof. 

Given, 𝐴 ⊂ 𝐵 

 𝐵 = 𝐴 + (𝐵 − 𝐴) 

Events 𝐴 & 𝐵 − 𝐴 are exclusive 

∴    𝑃(𝐵) = 𝑃(𝐴 + (𝐵 − 𝐴)) 

  = 𝑃(𝐴) + 𝑃(𝐵 − 𝐴)      (𝑏𝑦 𝑎𝑥𝑖𝑜𝑚 3) 

Since 𝑃(𝐵 − 𝐴) ≥ 0 we have 𝑃(𝐵) ≥ 𝑃(𝐴). 

 

1.1.4. Application of combinatorial formulas for computing probabilities 

 

In some problems we can compute probabilities by applying combinatorial formulas. we 

illustrate this by some examples. 

Example 1.  

Suppose we have 5 balls of different colors in an urn. Assume that the probabilities of 

drawing any particular ball is the same for any ball and equal p. 



 

 

16 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

Here E consists of 5 elements and by hypothesis each has the same probability. 

Hence by theorem 1.3.1, we have 5𝑝 = 1, 𝑜𝑟 𝑝 =
1

5
. 

Example 2. 

Suppose we have in the urn 9 slips of papers with the numbers 1 to 9 written on them, 

and suppose there are no two slips marked with the same number. Then E has 9 elementary 

events. Denote by A the event that on the slip of paper selected at random an even number will 

appear. What is the probabilities of this event? 

Solution. 

Suppose that the probability of selecting any particular slip is the same for any slip, and hence 

equals it. We shall obtain a slip with an even number if we draw one of the slips marked with 

2, 4, 6 or 8.  

According to axiom III, the required probability equals  

𝑃(𝐴) =
1

9
+
1

9
+
1

9
+
1

9
=
4

9
 

If we compute the probability of selecting a slip with an odd number, we may notice that this 

random event is the complement of A (we denote it by A) and, by theorem 1.3.2, we have  

𝑃(𝐴̅) =  1 −  𝑃 (𝐴) =
5

9
. 

Example 3.  

Let us toss a coin three times. What is the probability that heads appear twice? 

Solution. 

The number of all possible combinations which may occur as a result of three successive tosses 

equals 23 = 8. We have the following possible combinations:  

𝐻𝐻𝐻,𝐻𝐻𝑇,𝐻𝑇𝐻, 𝑇𝐻𝐻, 𝐻𝑇𝑇, 𝑇𝐻𝑇, 𝑇𝑇𝐻, 𝑇𝑇𝑇 

Consider each of these combinations as an elementary event and the whole collection of them 

as the set E. Suppose that the occurrence of each of them has the same probability. Then We 

have that the probability of each particular combination equals 
𝑙

23
. From the table we see that 

heads appear twice in three elementary events 



 

 

17 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

𝐸1 = {𝐻𝐻𝑇, 𝐻𝑇𝐻, 𝑇𝐻𝐻} 

Hence by axiom III the required probability is  𝑃(𝐸1) =
3

8
. 

Example 4.  

If we toss a coin n times. What is the probability that heads appear twice? 

Solution. 

Here we toss a coin n time. The number of all possible combinations with n tosses equals 2n. 

The number of combinations in which heads appear in times equals the number of 

combinations of in elements from n elements given by  

(
𝑛
𝑚
) =

𝑛!

𝑚! (𝑛 −𝑚)!
 

If every possible result of n successive tosses of a coin is equally likely, the required probability 

is 

𝑛!

2𝑛𝑚! (𝑛 −𝑚)!
 

Example 5.  

Compute the probability that heads appear at least twice in three successive tosses of a 

coin.  

Solution. 

The random event under consideration will occur if in three tosses heads appear two or three 

times.  

According to formula in the result, the probability that heads appear three times equals  

3!

23. 3! .0!
=
1

8
 

 

and the probability that heads appear twice equals 
3

8
 .  

Hence, according to axiom III, the required probability is  
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1

8
+
3

8
=

1

2
  

Note. In examples 1 to 4 the equiprobability of all elementary events was assumed. This 

assumption was obviously satisfied in our examples, but it is not always acceptable.  

 

1.1.5. Conditional Probability 

 

Definition. 

 Let the probability of the event 𝐵 be positive. The conditional probability of the event 

A provided 𝑩 has occurred equals the probability of 𝐴𝐵 divided by the probability of 𝐵. Thus 

 𝑃(𝐴|𝐵) =
𝑃(𝐴𝐵)

𝑃(𝐵)
, 𝑤ℎ𝑒𝑟𝑒 𝑃(𝐵) > 0……(1) 

 𝑃(𝐵|𝐴) =
𝑃(𝐴𝐵)

𝑃(𝐴)
, 𝑤ℎ𝑒𝑟𝑒 𝑃(𝐴) > 0……(2) 

From (1) and (2), we obtain, 

 𝑃(𝐴𝐵) = 𝑃(𝐵)𝑃(𝐴|𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴)…… (3) 

This formula is to be read: The probability of the product 𝐴𝐵 of two events equals the product 

of the probability of 𝐵 times the conditional probability of 𝐴 provided 𝐵 as occur or the product 

of the probability of 𝐴 times the conditional probability of 𝐵 provided 𝐴 as occurred. 

 

Let 𝐴1, 𝐴2, 𝐴3 denoted three events from the same field 𝑍. 

The probability of 𝐴3 provided the product 𝐴1𝐴2 has occurred  equals  

𝑃(𝐴3|𝐴1𝐴2) =
𝑃(𝐴3𝐴1𝐴2)

𝑃(𝐴1𝐴2)
 where 𝑃(𝐴1𝐴2) > 0……(4) 

From (1) and (4) we obtain the for the probability of the product  of three events the relations 

 𝑃(𝐴1𝐴2𝐴3) = 𝑃(𝐴1𝐴2)𝑃(𝐴3|𝐴1𝐴2) 

= 𝑃(𝐴1)𝑃(𝐴2|𝐴1)𝑃(𝐴3|𝐴1𝐴2) 

This formula is to be read: The probability of the product of three events equals the probability 

of the first event times the conditional proba-bility of the second event provided the first event 
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has occurred times the probability of the third event provided the product of the first two events 

has occurred.  

Let 𝐴1, 𝐴2, ……𝐴𝑛 be random events. Consider the conditional probabilities 

𝑃(𝐴𝑘1𝐴𝑘2  . . . 𝐴𝑘𝑟|𝐴_𝑘𝑟+1 . . . 𝐴𝑘𝑛) of the product of some subgroup consisting of 𝑟 events (1 ≤

𝑟 ≤ 𝑛 − 1) provided the product of the remaining 𝑛 −  𝑟 events has occurred. Then we obtain 

 

 𝑃(𝐴1𝐴2……𝐴𝑛) = 𝑃(𝐴1)𝑃(𝐴2|𝐴1)𝑃(𝐴3|𝐴1𝐴2)……𝑃(𝐴𝑛|𝐴1𝐴2… . . 𝐴𝑛−1). 

 

Remark. We shall show that the conditional probability satisfies axioms I to III. 

We know that 𝑃(𝐴𝐵) ≤ 𝑃(𝐵) 

Event 𝐵may occur either when event 𝐴 occurs or when event 𝐴 does not occur. hence 

  𝐵 = 𝐴𝐵 ∪ 𝐴̅𝐵,  

where 𝐴̅ is complement of 𝐴. Thus 

  𝐴𝐵 ⊂ 𝐴𝐵 ∪ 𝐴̅𝐵 𝑃(𝐴𝐵) = 𝑃(𝐵)𝑃(𝐴|𝐵) 

Since 𝑃(𝐴𝐵) ≥ 0, 𝑃(𝐵) > 0 we obtain 

  0 ≤ 𝑃(𝐴|𝐵) ≤ 1 

Which is the property expressed by axiom I. 

Now, let 𝐴|𝐵 be the sure event in 𝑍′. That is let 𝐴𝐵 = 𝐵. Then 

𝑃(𝐴𝐵) = 𝑃(𝐵) 

And hence 

 𝑃(𝐴|𝐵) =
𝑃(𝐴𝐵)

𝑃(𝐵)
= 1 

This is the property expressed by axiom II. 

Consider the alternative ∑ (𝐴𝑖𝑖 |𝐵)  of pairwise exclusive events. We can write 

∑ (𝐴𝑖𝑖 |𝐵) = (∑ 𝐴𝑖𝑖 )|𝐵 , 

And hence  
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            𝑃[∑ (𝐴𝑖𝑖 |𝐵)] = 𝑃[(∑ 𝐴𝑖𝑖 )|𝐵 ]  

According to (1) and the axiom III we have 

𝑃[∑ (𝐴𝑖𝑖 |𝐵)] =  
𝑃[(∑ 𝐴𝑖𝑖 )𝐵]

𝑃(𝐵)
    

  =
𝑃(∑ 𝐴𝑖𝑖  𝐵)

𝑃(𝐵)
 

   = ∑
𝑃(𝐴𝑖𝐵)

𝑃(𝐵)𝑖  

   = ∑ 𝑃(𝐴𝑖|𝐵)𝑖  

∴ 𝑃[∑ (𝐴𝑖|𝐵)] 𝑖 = ∑ 𝑃(𝐴𝑖𝑖 |𝐵) s 

This formula expresses the countable additivity of the conditional probability.  

Since the axioms are satisfied for the conditional probabilities, the theorems derived from these 

axioms hold for the conditional probabilities. 

 

1.1.6. Bayes Theorem 

 

Let us consider the following examples. 

Example 1. 

 We have 2 urns. There are 3 white and 2 black balls in the 1st urn and 1 white & 4 black 

balls in the second urn. From an urn chosen at random we select one ball at random. What is 

the probability of obtaining a white ball if the probability of selecting each of the urns equals 

0.5? 

Solution. 

Let 𝐴1 & 𝐴2 be the events of selecting the 1st or 2nd urn respectively 

Given the probability of selecting each of urns equals 0.5 

i.e., 𝑃(𝐴1) = 0.5 & 𝑃(𝐴2) = 0.5 

let 𝐵 be the event of selecting the white ball. 

The probability of selecting white ball from 𝐴1 is 
3

5
= 0.6 



 

 

21 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

 i.e., 𝑃(𝐵|𝐴1) = 0.6 

The probability of selecting white ball from 𝐴2 𝑖𝑠
1

5
= 0.2 

i.e., 𝑃(𝐵|\𝐴2) = 0.2 

Since 𝐵 is the event of selecting white balls. 

 𝐵 = 𝐴1𝐵 + 𝐴2𝐵 

Since events 𝐴1𝐵 and 𝐴2𝐵 are exclusive. 

 𝑃(𝐵) = 𝑃(𝐴1𝐵) + 𝑃(𝐴2𝐵) 

We know that, 𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴) 

∴ 𝑃(𝐵) = 𝑃(𝐴1)𝑃(𝐵|𝐴1) + 𝑃(𝐴2)𝑃(𝐵|𝐴2) 

   = (0.5)(0.6) + (0.5)(0.2) 

   = 0.30 + 0.10 

   = 0.40 

∴ The probability of obtaining white balls = 0.4. 

 

Theorem 1.7.(Theorem of absolute probability) 

 If the random events 𝐴1, 𝐴2, … re pairwise exclusive and exhaust the set E of elementary 

events and if 𝑃(𝐴𝑖) > 0 𝑓𝑜𝑟 𝑖 = 1,2,3, ….Then for any random event B we have   

𝑃(𝐵) = 𝑃(𝐴1)𝑃(𝐵\𝐴1) + 𝑃(𝐴2)𝑃(𝐵\𝐴2) + ⋯…. 

Proof. 

Let B be any random event. 

Since 𝐴1, 𝐴2, … are pairwise exclusive. 

∴ 𝐵 may together with one and only one of events 𝐴𝑖. Then we have 

 𝐵 = 𝐴1𝐵 + 𝐴2𝐵 +⋯ 

       𝑃(𝐵) = 𝑃(𝐴1𝐵) + 𝑃(𝐴2𝐵) +⋯     



 

 

22 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

We know that  𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴) 

 ∴ We have, 

𝑃(𝐵) = 𝑃(𝐴1)𝑃(𝐵\𝐴1) + 𝑃(𝐴2)𝑃(𝐵\𝐴2) + ⋯…. 

 Hence the proof. 

 

Theorem 1.8. (Bayes theorem) 

 If the random events 𝐴1, 𝐴2, …… are pairwise exclusive and exhaust the set 𝐸 of 

elementary events and if 𝑃(𝐴𝑖) > 0 for 𝑖 = 1,2,3, … we have 

 𝑃(𝐴𝑖|𝐵) =
𝑃(𝐴𝑖)𝑃(𝐵|𝐴𝑖)

𝑃(𝐴1)𝑃(𝐵|𝐴1)+𝑃(𝐴2)𝑃(𝐵|𝐴2)+⋯
  

Proof. 

We know that 𝑃(𝐴|𝐵) =
𝑃(𝐴𝐵)

𝑃(𝐵)
 

Substitute 𝐴 by 𝐴𝑖, 

 𝑃(𝐴𝑖\𝐵) =
𝑃(𝐴𝑖𝐵)

𝑃(𝐵)
=

𝑃(𝐴𝑖)𝑃(𝐵\𝐴𝑖)

𝑃(𝐵)
 

 𝑃(𝐴𝑖|𝐵) =
𝑃(𝐴𝑖)𝑃(𝐵|𝐴𝑖)

𝑃(𝐴1)𝑃(𝐵|𝐴1)+𝑃(𝐴2)𝑃(𝐵|𝐴2)+⋯…
 

Example 2.  

Guns I and 2 are shooting at the same target. It has been found that gun 1 shoots on the 

average nine shots during the same time gun 2 shoots ten shots. The precision of these two 

guns is not the same; on the average, out of ten shots from gun 1 eight hit the target, and from 

gun 2, only seven. During the shooting the target has been hit by a bullet, but it is not known 

which gun shot this bullet. What is the probability that the target was hit by gun 2?  

Solution. 

Denote by Al and A2 the events that a bullet is shot by gun 1 and gun 2, respectively. Taking 

into consideration the ratio of the average number of shots made by gun 1 to the average 

number of shots made by gun 2, we can put  𝑃(𝐴1) = 0.9𝑃(𝐴2). 
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 Denote by B the event that the target is hit by the bullet. According to the data about the 

precision of the guns we have  

𝑃(𝐵|𝐴1)  =  0.8 𝑎𝑛𝑑 𝑃(𝐵|𝐴2)  =  0.7 

 According to Bayes formula 

𝑃(𝐴2|𝐵) =
𝑃(𝐴2)𝑃(𝐵|𝐴2)

𝑃(𝐴1)𝑃(𝐵|𝐴1) + 𝑃(𝐴2)𝑃(𝐵|𝐴2)
 

                       =
0.7 𝑃(𝐴2)

0.9 𝑃(𝐴2) 0.8 + 0.7 𝑃(𝐴2)
= 0.493 

Exercise. 

1. A deck of cards contains 52 cards. Player G has been dealt 13 of them. Compute the 

probability that player G has  

(a) Exactly 3 aces 

(b) At least 3 aces 

(c) Any 3 face cards of the same face value 

(d) Any 3 cards of the same face value from the 5 highest denominations 

(e) Any 3 cards of the same face value from the eight lowest denominations 

(f) Any 3 cards of the same value, 

(g) Three successive spades 

(h) At least three successive of any suit 

(i) Three successive cards of any suit 

(j) At least three successive cards of any suit 

 

1.1.7. Independent Events 

 

In general, the conditional probability 𝑃(𝐴|𝐵) differs from 𝑃(𝐴). 

Suppose 𝑃(𝐴|𝐵) = 𝑃(𝐴) 

We know that 𝑃(𝐴𝐵) = 𝑃(𝐵)𝑃(𝐴|𝐵) 

 ⇒ 𝑃(𝐴𝐵) = 𝑃(𝐵)𝑃(𝐴) 

Suppose 𝑃(𝐵|𝐴) = 𝑃(𝐵) 
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 ∴ 𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴) 

 ⇒ 𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵), Where 𝑃(𝐴) > 0 and 𝑃(𝐵) > 0. 

 

Definition. 

 Two events 𝐴 and 𝐵 are called independent if 𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵), where 𝑃(𝐴) >

0 & 𝑃(𝐵) > 0. 

i.e., If the probability of the product AB is equal to the product of the probabilities 𝐴 and 𝐵. 

 

Definition. 

 Events 𝐴1, 𝐴2, …… , 𝐴𝑛 are independent if for all integers indices 𝑘1, 𝑘2, … , 𝑘𝑠 

satisfying the conditions 

1 ≤ 𝐾1 < 𝐾2 < ⋯… < 𝐾𝑠 ≤ 𝑛 

We have 

 𝑃(𝐴𝑘1 , 𝐴𝑘2……𝐴𝑘𝑠) = 𝑃(𝐴𝑘1)𝑃(𝐴𝑘2)…… . 𝑃(𝐴𝑘𝑠) 

i.e., If the probability of the product of every combination 𝐴𝑘1 , 𝐴𝑘2 , …… . 𝐴𝑘𝑠  of events equals 

the product of the probabilities of these events. 

Example 1. 

 There are 4 slips of paper of identical size in an urn. Each slip is marked with one of 

the numbers 110, 101, 011, 000 and there are no two slips marked with the same number. 

Consider event 𝐴1 that on the slip selected the number – 1 appears in the first place, event 𝐴2 

that one appears in the second place and 𝐴3 that one appears in the third place. Verify 𝐴1, 𝐴2, 𝐴3 

are independent. 

Solution. 

 Let 𝐴1 = {110,101} 

 𝑃(𝐴1) =
2

4
=

1

2
 

 Let 𝐴2 = {110,011} 
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 𝑃(𝐴2) =
1

2
 

 Let 𝐴3 = {101,011} 

 𝑃(𝐴3) =
1

2
 

 𝐴1𝐴2𝐴3 = {∅} 

 𝑃(𝐴1𝐴2𝐴3) = 0 

 𝑃(𝐴1)𝑃(𝐴2)𝑃(𝐴3) =
1

2
×
1

2
×
1

2
=

1

8
≠ 0 

 ∴ 𝑃(𝐴1𝐴2𝐴3) ≠ 𝑃(𝐴1)𝑃(𝐴2)𝑃(𝐴3) 

 ∴ 𝐴1𝐴2𝐴3 are not independent 

 𝐴1𝐴2 = {110} 

 𝑃(𝐴1𝐴2) =
1

4
 

 𝐴2𝐴3 = {011} 

 𝑃(𝐴2𝐴3) =
1

4
 

 𝐴1𝐴3 = {101} 

 𝑃(𝐴1𝐴3) =
1

4
 

 𝑃(𝐴1) =
1

2
; 𝑃(𝐴2) =

1

2
; 𝑃(𝐴3) =

1

2
 

 𝑃(𝐴1)𝑃(𝐴2) =
1

2
.
1

2
=

1

4
= 𝑃(𝐴1𝐴2) 

 𝑃(𝐴2)𝑃(𝐴3) =
1

4
= 𝑃(𝐴2𝐴3) 

 𝑃(𝐴1)𝑃(𝐴3) =
1

4
= 𝑃(𝐴1𝐴3) 

∴ 𝐴1, 𝐴2, 𝐴3 are independent. 

 

Definition. 
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 Events 𝐴1, 𝐴2, … are independent if for every 𝑛 = 2,3…… events 𝐴1, 𝐴2, …… , 𝐴𝑛 are 

independent. 

 

Example 2.  

Pairwise independent does not imply mutual independence. Suppose we twice spin a 

fair spinner with the numbers 1,2,3 & 4. Let 𝐴1 be the event that sum of the numbers spun is 

5. Let 𝐴2 be the event that the first number spun is a one. Let 𝐴3 be the event the second number 

spun is  a four. Prove that 𝐴1, 𝐴2, 𝐴3 are pairwise independent but not that mutually 

independent. 

Solution. 

 𝑃(𝐴1) =
1

4
[
4

16
=

1

4
] 

 𝑃(𝐴2) =
1

4
 

 𝑃(𝐴3) =
1

4
 

 𝑃(𝐴1𝐴2) =
1

16
=

1

4
.
1

4
= 𝑃(𝐴1)𝑃(𝐴2) 

 𝑃(𝐴1𝐴3) =
1

16
=

1

4
.
1

4
= 𝑃(𝐴1)𝑃(𝐴3) 

 𝑃(𝐴2𝐴3) =
1

16
= 𝑃(𝐴2)𝑃(𝐴3) 

 ∴ 𝐴1, 𝐴2, 𝐴3 are pairwise independent. 

 𝐴1𝐴2𝐴3 = {(1,4)} 

 𝑃(𝐴1𝐴2𝐴3) =
1

16
  

 𝑃(𝐴1)𝑃(𝐴2)𝑃(𝐴3) =
1

4
×
1

4
×
1

4
 

    =
1

64
 

 ∴ 𝑃(𝐴1𝐴2𝐴3) ≠ 𝑃(𝐴1)𝑃(𝐴2)𝑃(𝐴3) 

 ∴ 𝐴1, 𝐴2, 𝐴3 are not mutually independent. 

Exercise. 
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1. Prove that if the events 𝐴 and 𝐵 are independent, the same is true for the events 𝐴̅ and �̅�. 

 

1.2. Random variables 

 

1.2.1. The concept of random variable 

 

We can assign a number to every elementary event from a set E of elementary events. 

In the coin-tossing example we assigned the number 1 to the appearance of heads and the 

number 0 to the appearance of tails. Then the probability of obtaining the number 1 as a result 

of an experiment will be the same as the probability of obtaining a head, and the probability of 

obtaining the number 0 will be the same as the probability of obtaining a tail.   

Definition. 

 Let 𝑋(𝑒) be a single-valued seat function defined on the set 𝐸 of elementary events. 

The set 𝐴 of all elementary events to which the function 𝑋(𝑒) assigns values in a given set 𝑆 

of real number is called the inverse image of the set 𝑆. 

 Clearly the inverse image of the set ℝ of all real numbers is the whole set 𝐸. 

 

Definition. 

 A single-valued real function 𝑋(𝑒) defined on the set 𝐸 of elementary events is called 

a random variable if the inverse image of every interval I in the real axis of the form (−∞, 𝑥) 

is a random event. 

Note. 

1. We can write 𝑋 instead of 𝑋(𝑒) 

2. Random variables are usually denoted by capital letters 𝑋, 𝑌 and so on and their 

values by corresponding small letters 𝑥, 𝑦,…… 

 

Definition. 
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 The function 𝑃(𝑥)(𝑆) giving the probability that a random variable 𝑋 takes on a value 

belonging to 𝑆, where 𝑆 is an arbitrary borel set on the real axis, is called the probability 

function of 𝑋 

We write, 

 𝑃(𝑥)(𝑆) = 𝑃(𝑥)(𝑋 ∈ 𝑆) 

Remark. 

1. The probability 𝑃(𝑥)(𝐼) that the random variable 𝑋(𝑒) takes on the values in the interval 

I equals to the probability𝑃(𝐴) of the inverse image 𝐴 of 𝐼 

2. If a random event A is the inverse image of a point 𝑥, the probability that the random 

variable 𝑋 takes on the value 𝑥 equals the probability of the event 𝐴 

i.e., 𝑃(𝑥)(𝑋 = 𝑥) = 𝑃(𝐴)   

3. Since any interval 𝐼 of the form [𝑎, 𝑏) where 𝑎 < 𝑏, is the difference of the intervals 

(−∞, 𝑏) − (−∞, 𝑎) 

 

1.2.2. The distribution function 

 

It is convenient to characterize the probability distribution by means of the distribution 

function which is now defined.  

Example 1. 

 Consider tossings of a die. To every elementary event, that is, to every result of a throw, 

we can assign one of the numbers 1,2,3,……,6, the number of dots which appear on the 

resultant face. Find 

i) 𝑃(𝑋 < 1) 

ii) 𝑃(𝑋 < 𝑥) if 1 < 𝑥 ≤ 2 

iii) 𝑃(𝑋 < 𝑥) if 2 < 𝑥 ≤ 3 

iv) 𝑃(𝑋 < 𝑥)   𝑖𝑓 5 < 𝑥 ≤ 6 

v) 𝑃(𝑋 < 𝑥)   𝑖𝑓 𝑥 > 6 

Solution. 

Let 𝑋 be the random variable it takes six values. 𝑥𝑖 = 𝑖(𝑖 = 1,2,3,4,5,6) 
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Clearly, 

 𝑃(𝑋 = 𝑥𝑖) =
1

6
, 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 6 

(i) 𝑃(𝑋 < 1) = 0  

(ii) If 1 < 𝑥 ≤ 2 

𝑃(𝑋 < 𝑥) = 𝑃(𝑋 < 2)  

       = 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) 

       = 0 +
1

6
=

1

6
 

(iii) If 2 < 𝑥 ≤ 3 

𝑃(𝑋 < 3) = 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2)  

      = 0 +
1

6
+
1

6
 

      =
2

6
=

1

3
 

(iv) If 5 < 𝑥 ≤ 6 

𝑃(𝑋 < 𝑥) = 𝑃(𝑋 < 6)  

     = ∑ 𝑃(𝑋 = 𝑖)5
𝑖=1  

     =
1

6
+

1

6
+

1

6
+
1

6
+
1

6
=

5

6
 

(v) If 𝑥 > 6 

𝑃(𝑋 < 𝑥) = 𝑃(𝑋 ≤ 6)  

      = ∑ 𝑃(𝑋 = 𝑖)6
𝑖=1       

     =
1

6
+

1

6
+

1

6
+
1

6
+
1

6
+
1

6
=

6

6
= 1 

Remark.  

 We obtain the step function for the above example 𝑥 increases the value of 𝑃(𝑋 < 𝑥) 

is increasing by a constant number 𝑃(𝑋 = 𝑥𝑖). 

 

Definition. 

 The function 𝐹(𝑥) is defined as 𝐹(𝑥) = 𝑃(𝑋 < 𝑥) is called the distribution function 

of the random variable 𝑋. 
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Theorem 1.9. 

 The single-valued function 𝐹(𝑥) is a distribution function iff it is non-decreasing, 

continuous at least from the left and satisfies the condition 𝐹(−∞) = 0, 𝐹(∞) = 1 

Proof. 

Suppose the single-valued function 𝐹(𝑥) is a distribution. 

Clearly 𝐹(−∞) = 0, 𝐹(+∞) = 1 

Claim: 𝐹(𝑥) is the non – decreasing function 

Let 𝑥1& 𝑥2 where 𝑥1 < 𝑥2 be two point on the real axis.  

Since (−∞, 𝑥2) contains the interval (−∞, 𝑥1) 

 i.e., (−∞, 𝑥1) ≤ (−∞, 𝑥2) 

  𝑃(𝑋 < 𝑥1) ≤ 𝑃(𝑋 < 𝑥2) 

  𝐹(𝑥1) ≤ 𝐹(𝑥2) 

 ∴ 𝐹(𝑥) is a non-decreasing. 

Claim: Every distribution function is continuous at least from left. 

Let 𝑥1 < 𝑥2 < ⋯… < 𝑥 be an arbitrary increasing sequence converge to 𝑥. 

Let 𝐴𝑘 be the event that the random variable 𝑋 takes on a value from the half open interval 

[𝑥𝑘 , 𝑥) 

If 𝑘1 < 𝑘2, from the occurrence of the event 𝐴𝑘2 follows the occurrence of the event 𝐴𝑘1 

∴ {𝐴𝑘} is the non-increasing sequence of the events. 

The limit of the sequence {𝑥𝑘} is the point 𝑥, does not belong to any of the intervals. 

 i.e., 𝑥 ∈ [𝑥𝑘 , 𝑥) 

∴ The product 𝐴 = ∏ 𝐴𝐾
∞
𝑘=1   is the impossible 

⇒ 𝐴 is impossible event. 

⇒ 𝑃(𝐴) = 0.  

By theorem 1.3.4, 
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 lim
𝑘→∞

𝑃(𝐴𝑘) = 𝑃(𝐴) 

 i.e., lim
𝑘→∞

𝑃(𝐴𝐾) = 𝑃(𝐴) 

 ∴ 𝑙𝑖𝑚
𝑘→∞

𝑃(𝐴𝑘) = 0 

 lim
𝑘→∞

𝑃(𝑥𝑘 ≤ 𝑋 < 𝑥) = 0 

lim
𝑘→∞

[𝐹(𝑥) − 𝐹(𝑥𝑘)] = 0   

lim
𝑘→∞

𝐹(𝑥𝑘) = 𝐹(𝑥)  

∴ 𝐹(𝑥) is the continuous function from the left. 

Conversely, Suppose 𝐹(𝑥) is a non-decreasing and continuous from the left & 𝐹(−∞) =

0, 𝐹(+∞) = 1. 

Claim: 𝐹(𝑥) is a distribution function. 

Take the interval [0,1] as the set of elementary events. 

The field of all Borel subsets of this interval as the field of random events. 

Take as a probability measure the Lebesgue measure [𝑖. 𝑒. , 𝑃(𝐴) = 𝑚(𝐴)]. 

Then the probability of a Borel set from the interval [0,1] is equal to its Lebesgue measure. 

 𝑖. 𝑒, 𝐴 ∈ [0,1] ⇒ 𝑃(𝐴) = 𝑚(𝐴) 

 In particular, the probability of the interval [0, 𝑒] where 0 < 𝑒 ≤ 1 equals the length 𝑒 

of this interval 

 (𝑖. 𝑒. , 𝑃([0, 𝑒]) = 𝑙([0, 𝑒] = 2)) 

Now we define the random variable 𝑋(𝑒) in the following way: 

 i.e., 𝑋(𝑒) = inf
𝐹(𝑦)=𝑒

𝑦(0 ≤ 𝑒 ≤ 1) 

Thus, for a given value 𝑒, the random variable 𝑋(𝑒) equal to l.u.b of the set of all 𝑦 such that 

𝐹(𝑦) = 𝑒. 

Since  𝑃(𝑋|𝑒) < 𝑍 = 𝑃 ( inf 𝑦
𝐹(𝑦)=𝑒

< 𝑥) 
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   = 𝐹(𝑥)   (−∞ < 𝑥 < ∞) 

 ∴ 𝑃(𝑋(𝑒) < 𝑥) = 𝐹(𝑥) 

Thus, the distribution function of 𝑋(𝑒) is the function F. 

Hence proved. 

Remark. 

 The set of points of dis continuity is at most countable. The set of points at which the 

distribution function 𝐹(𝑥) has a jump not smaller than 
1

𝑛
 is denoted by 𝐻𝑛. 

 Then 𝐻 = 𝐻1 +𝐻2 +⋯ 

For every 𝑛 the set 𝐻𝑛 is finite, hence the set H is at most countable. 

 

1.2.3. Random Variable of The Discrete Type and The Continuous Type 

 

Definition. 

 A random variable is said to be of the discrete type if it takes on, with a probability 1, 

values belonging is a set 𝑆 which is at most countable and every value in the set  𝑆 has the 

positive probability. 

 These values are called jump points and their probabilities jumps. 

Example 1. 

A stock of fruits contains good & defective items. 

Here, two elementary events 

i.e., good item (or) defective item 

Let the probability of drawing good item denoted by 𝑃 

Suppose, 0 < 𝑃 < 1 

Let the drawing of a good item is denoted by 1 and defective item the number 0. 

∴ We get the random variable of discrete type which has only two values with positive 

probability 1 & 0 with the probabilities 𝑃 and 1 − 𝑃 respectively. 
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Remark. 

Let a random variable 𝑋 of the discrete type take on the values 𝑥𝑖(𝑖 = 1,2,3…… ) with 

probabilities 𝑃𝑖. 

By the definition, 

 ∑ 𝑃𝑖 = 1
𝑛
𝑖=1  if the no. of jump points 𝑥𝑖 is finite. 

∑ 𝑃𝑖 = 1
∞
𝑖=1   if no. of jump points 𝑥𝑖 is countable. 

The above definition formulated as follows: 

 

Definition. 

 Let 𝑥𝑖(𝑖 = 1,2,3, … ) be an arbitrary jump point of a random variable 𝑋 of the discrete 

type. The probability that the random variable 𝑋 takes on the values 𝑥𝑖 is called the probability 

function of the discrete-type random variable 𝑋 and we write 

 i.e., 𝑃(𝑋 = 𝑥𝑖) = 𝑃𝑖, 

 where the numbers 𝑃𝑖(𝑖 = 1,2…… ) satisfy either ∑ 𝑃𝑖
𝑛
𝑖=1 = 1 (or) ∑ 𝑃𝑖 = 1∞

𝑖=1 . 

The distributive function 𝐹(𝑥) as the form  

𝐹(𝑥) = ∑ 𝑝𝑖𝑥𝑖<𝑥 ,  

where the summation is extended over all the points 𝑥𝑖 for which 𝑥𝑖 < 𝑥. 

Suppose a random variable 𝑋 which has no jump points. The distribution function of such a 

random variable is a continuous function. 

 

Definition. 

 A random variable 𝑋 is said to be of the continuous type if there exists a non-negative 

function 𝑓(𝑥) such that for every real number 𝑥 the following relation holds: 

 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

−∞
,  

where 𝐹(𝑥) is the distribution function of 𝑋. The function 𝑓(𝑥) is called probability density of 

the random variable 𝑋. 
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Note. “Probability density” is also called as “density function” (or)  “density”. 

 

Properties of a distribution function. 

1. Every density function 𝑓(𝑥) satisfies the relation 𝐹(+∞) = ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
= 1 

2. For every real 𝑎 𝑎𝑛𝑑 𝑏, where  𝑎 < 𝑏, we have 

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑋 ≤ 𝑏) − 𝑃(𝑋 ≤ 𝑎)  

  = 𝐹(𝑏) − 𝐹(𝑎) 

  = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

−∞
− ∫ 𝑓(𝑥)𝑑𝑥

𝑎

−∞
 

  = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

∴ 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
  

3. Clearly for every Borel set 𝑆, we have 𝑃(𝑆) = ∫ 𝑓(𝑥)𝑑𝑥
𝑆

 

4. If the function 𝑓(𝑥) is continuous at some point 𝑥, 

𝐹′(𝑥) = 𝑓(𝑥) 

Thus the continuity points of the function 𝑓(𝑥) we  have 

  𝑓(𝑥) = 𝑙𝑖𝑚
∆𝑥→0

𝐹(𝑥+∆𝑥)−𝐹(𝑥)

∆𝑥
 

     = 𝑙𝑖𝑚
∆𝑥→0

𝑃(𝑋<𝑥+∆𝑥)−𝑃(𝑋<𝑥)

∆𝑥
 

   𝑓(𝑥) = 𝑙𝑖𝑚
∆𝑥→0

𝑃(𝑥≤𝑋<𝑥+∆𝑥)

∆𝑥
 

∴ Every real function 𝑓(𝑥) which is non-negative integrable over the whole real axis and 

satisfies the condition ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
= 1 is the probability density of a random variable 𝑋 of the 

continuous type. 

Clearly, we have the function 𝐹(𝑥) defined by the formula 

 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

−∞
  

Has all the properties of a distribution function. 

 

Example 2. 

 On the set of all real numbers, define the density function 𝑓(𝑥) in the following way: 
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 𝑓(𝑥) =  {

0       𝑓𝑜𝑟 𝑥 < 0       
1

2
𝑥     𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 2

0       𝑓𝑜𝑟 𝑥 > 2        

 

Find the distribution function 𝐹(𝑥). 

Solution. 

We have𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

−∞
. 

For 𝑥 < 0, 

   𝐹(𝑥) = 0 

For 0 ≤ 𝑥 ≤ 2, 

 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
0

−∞
+ ∫ 𝑓(𝑥)𝑑𝑥

𝑥

0
 

          = ∫ 0𝑑𝑥
0

−∞
+ ∫

1

2
𝑥 𝑑𝑥

2

0
=

𝑥2

4
 

For 𝑥 > 2, 

 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
0

−∞
+ ∫ 𝑓(𝑥)𝑑𝑥

2

0
+ ∫ 𝑓(𝑥)𝑑𝑥

𝑥

2
 

   = 0 + ∫
𝑥

2
𝑑𝑥 + 0

2

0
 

   = [
𝑥2

4
]
0

2

=
4

4
= 1 

  ∴ 𝐹(𝑥) = {

0  𝑓𝑜𝑟 𝑥 < 0
𝑥2

4
  𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 2

1   𝑓𝑜𝑟 𝑥 > 2

 

Remark.  

1. If for a random variable 𝑋 of a continuous type, the probability of a certain event equals 

0. It does not follow that this event is impossible. It should be considered only as an 

event which is very unlikely is occur 

2. If for a random variable 𝑋 of the its type, the probability of a certain event equals 1 it 

should be considered only as event which is very like to occur. 
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1.2.4. Functions of random variable 

 

Let us consider an example. 

Example 1. 

 Suppose that random varialbe 𝑋 may take on two values 𝑥1 = 5 and 𝑥2 = 10 with the 

probabilities 𝑃(𝑋 = 5) =
1

3
 𝑎𝑛𝑑 𝑃(𝑋 = 10) =

2

3
. Find the distribution function of 𝑌 where 

𝑌 = 2𝑋. 

Solution. 

Given 𝑥1 = 5 & 𝑥2 = 10, then the random variable Y can also take two values, 

  𝑦1 = 2𝑥1 = 10   &  𝑦2 = 2𝑥2 = 20 

Where, 

 𝑃(𝑌 = 𝑦1) = 𝑃(2𝑋 = 10) = 𝑃(𝑋 = 5) =
1

3
, 

 𝑃(𝑌 = 𝑦2) = 𝑃(2𝑋 = 20) = 𝑃(𝑋 = 10) =
2

3
 

Thus 𝑌 takes on values 𝑦𝑖 = 2𝑥𝑖(𝑖 = 1,2) with the same probabilities as 𝑋 takes on the values 

𝑥𝑖.The distribution function of 𝑋 is, 

 𝐹(𝑥) = ∑ 𝑃𝑖𝑥𝑖<𝑥  

If 𝑥 ≤ 5, 

 𝐹(𝑥) = ∑ 𝑃𝑖𝑥𝑖<5  

         = ∑ 𝑃(𝑋 = 𝑥𝑖)𝑥𝑖<5  

          = 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2) + 𝑃(𝑋 = 3) + 𝑃(𝑋 = 4) 

 𝐹(𝑥) = 0  𝑖𝑓 𝑥 ≤ 5 

If 5 < 𝑥 ≤ 10, 

F𝑜𝑟 𝑥 = 6:  

 𝐹(𝑥) = ∑ 𝑃𝑖𝑥𝑖<6  

    = 𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 + 𝑃5 
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  =
1

3
 

F𝑜𝑟 𝑥 = 7:  

𝐹(𝑥) = ∑ 𝑃𝑖𝑥𝑖<7 = 𝑃1 + 𝑃2 +⋯ . .+𝑃6 =
1

3
  

F𝑜𝑟 𝑥 = 8:  

 𝐹(𝑥) = ∑ 𝑃𝑖𝑥𝑖<8 = 𝑃1 + 𝑃2 +⋯… .+𝑃7 =
1

3
 

F𝑜𝑟 𝑥 = 9:  

 𝐹(𝑥) = ∑ 𝑃𝑖𝑥𝑖<9 = 𝑃1 +⋯…+ 𝑃8 =
1

3
 

F𝑜𝑟 𝑥 = 10:   

 𝐹(𝑥) = ∑ 𝑃𝑖𝑥𝑖<10 = 𝑃1 +⋯…+ 𝑃9 =
1

3
 

∴ 𝐹(𝑥) =
1

3
  𝑖𝑓 5 < 𝑥 ≤ 10  

If 𝑥 > 10, 

𝑥 = 11:  

 𝐹(𝑥) = ∑ 𝑃𝑖𝑥𝑖<11 = 𝑃1 + 𝑃2 +⋯… .+𝑃10 =
1

3
+
2

3
= 1 

. 

. 

. 

∴ 𝐹(𝑥) = 1 if 𝑥 > 10 

Hence 𝐹(𝑥) = {

0     𝑖𝑓 𝑥 ≤ 5         
1

3
   𝑖𝑓 5 < 𝑥 ≤ 10

1    𝑖𝑓 𝑥 > 10         

  

Let the distribution function of 𝑌 be 𝐹1(𝑦). Then we have 

𝐹1(𝑦) = 𝑃(𝑌 < 𝑦)  

 = 𝑃(2𝑋 < 𝑦) 
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 = 𝑃 (𝑋 <
𝑦

2
) 

𝑖. 𝑒. , 𝐹1(𝑦) = 𝐹 (
𝑦

2
)  

∴ 𝐹1(𝑦) =

{
 
 

 
 𝑜  𝑖𝑓 

𝑦

2
≤ 5          

1

3
  𝑖𝑓 5 <

𝑦

2
≤ 10

1    𝑖𝑓 
𝑦

2
> 10        

  

𝐹1(𝑦) =  {

0   𝑖𝑓 𝑦 ≤ 10           
1

3
  𝑖𝑓 10 < 𝑦 ≤ 20

1    𝑖𝑓 𝑦 > 20           

  

Remark. 

 If 𝑌 = 𝑔(𝑋) is a single – valued and continuous transformation of a random variable 𝑋. 

Then 𝑌 is also a random variable whose distribution function is obtained from the distribution 

function of 𝑋. 

 

Theorem 1.10. 

 Let 𝐹(𝑥) be a distribution function of a random variable 𝑋. Find the distribution 

function of 𝑌 = −𝑋 

Proof. 

Let 𝐹(𝑥) be a distribution function of a random variable 𝑋. 

Consider the transformation 𝑌 = −𝑋 

Let the distribution function of 𝑌 be 𝐹1(𝑦). We have 

 𝐹1(𝑦) = 𝑃(𝑌 < 𝑦) 

  = 𝑃(−𝑋 < 𝑦) 

  = 𝑃(𝑋 > −𝑦) 

  = 1 − 𝑃(𝑋 ≤ 𝑦) … (1) 

If the random variable 𝑋 is of the continuous type, 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

−∞
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(1) ⇒ 𝐹1(𝑦) = 1 − 𝑃(𝑋 ≤ −𝑦)  

  = 1 − 𝐹(−𝑦)    

∴ 𝐹1(𝑦) = 1 − ∫ 𝑓(𝑥)𝑑𝑥
−𝑦

−∞
  

The density of 𝑌 is denoted by 𝑓1(𝑦) 

Then, 𝐹1(𝑦) = 1 − 𝐹(−𝑦) 

 𝐹1
′(𝑦) = 0 − 𝐹′(−𝑦)(−1) 

 𝐹1
′(𝑦) = 𝐹′(−𝑦) = 𝑓(−𝑦) 

 𝐹1
′(𝑦) = 𝑓(−𝑦) 

 𝑓1(𝑦) = 𝑓(−𝑦) 

Suppose 𝑋 is of the discrete type and −𝑦 is its jump point, 

(1) ⇒ 𝐹1(𝑦) = 1 − 𝑃(𝑋 ≤ −𝑦)  

  = 1 − [𝑝(𝑋 < −𝑦) + 𝑃(𝑋 = −𝑦)] 

  = 1 − 𝑃(𝑋 < −𝑦) − 𝑃(𝑋 = −𝑦) 

 𝐹1(𝑦) = 1 − 𝐹(−𝑦) − 𝑃(𝑋 = −𝑦). 

 Theorem 1.11. 

 Find the distribution of general linear transformation 𝑌 = 𝑎𝑋 + 𝑏, where 𝑋 is a random 

variable. 

Proof. 

Let 𝑌 = 𝑎𝑋 + 𝑏 where 𝑋 is a 𝑟. 𝜐 

Let 𝐹1(𝑦) be distribution function of 𝑌 

Case (i): If 𝑎 > 0, then 

 𝐹1(𝑦) = 𝑃(𝑌 < 𝑦) 

  = 𝑃(𝑎𝑋 + 𝑏 < 𝑦) 

  = 𝑃(𝑎𝑋 < 𝑦 − 𝑏) 
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  = 𝑃 (𝑋 <
𝑦−𝑏

𝑎
) 

 𝐹1(𝑦) = 𝐹 (
𝑦−𝑏

𝑎
)   … (1) 

Suppose 𝑓1(𝑦) is the density function, 

𝑓1(𝑦) = 𝐹1
′(𝑦) = 𝐹′ (

𝑦−𝑏

𝑎
) (

1

𝑎
)  

𝑓1(𝑦) =
1

𝑎
𝐹′ (

𝑦−𝑏

𝑎
)   

𝑓1(𝑦) =
1

𝑎
𝑓 (

𝑦−𝑏

𝑎
)   … (2)  

𝐹1
′(𝑦) =

1

𝑎
𝑓 (

𝑦−𝑏

𝑎
)  is valid for discrete as well as continuous. 

Case (ii): If 𝑎 < 0, then 

 𝐹1(𝑦) = 𝑃(𝑌 < 𝑦) 

  = 𝑃(𝑎𝑋 + 𝑏 < 𝑦) 

  = 𝑃(𝑎𝑋 < 𝑦 − 𝑏) 

  = 𝑃 (𝑋 >
𝑦−𝑏

𝑎
)      (∵ 𝑎 < 0) 

 𝐹1(𝑦) = 1 − 𝑃 (𝑋 ≤
𝑦−𝑏

𝑎
)   … (3) 

If the random variable 𝑋 is of the continuous type, then 

𝐹1(𝑦) = 1 − 𝐹 (
𝑦−𝑏

𝑎
)  

Let 𝑓1(𝑦) be the density function of 𝑌, 

 𝑓1(𝑦) = 𝐹1
′(𝑦) 

  = 0 − 𝐹′ (
𝑦−𝑏

𝑎
) (

1

𝑎
) 

 𝑓1(𝑦) =
−1

𝑎
𝑓 (

𝑦−𝑏

𝑎
)  … (4) 

From (2) & (4),  

𝑓1(𝑦) =
1

|𝑎|
𝑓 (

𝑦−𝑏

𝑎
) if 𝑋 is its type. 
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If the 𝑟. 𝜐 𝑋 is discrete type 

(3) ⇒ 𝐹1(𝑦) = 1 − [𝑃 (𝑋 <
𝑦−𝑏

𝑎
) − 𝑃 (𝑋 =  

𝑦−𝑏

𝑎
)]  

  = 1 − 𝑃 (𝑋 <
𝑦−𝑏

𝑎
) − 𝑃 (𝑋 =

𝑦−𝑏

𝑎
), 

if the point 
𝑦−𝑏

𝑎
 is a jump point of 𝑋. 

At the remaining points 𝑃 (𝑋 =
𝑦−𝑏

𝑎
) = 0. 

Theorem 1.13. 

 Find the distribution function of 𝑌 = 𝑋2, swhere 𝑋 is a random variable. 

Proof. 

Let 𝑋 be a 𝑟. 𝜐 with distribution function 𝐹(𝑥) 

Given 𝑌 = 𝑋2 

⇒ 𝑌 does not take on positive value  

Let 𝐹1(𝑦) be distribution function of 𝑌 

Then,  

  𝐹1(𝑦) =  {
0                 𝑓𝑜𝑟 𝑦 ≤ 0

𝑃(𝑌 < 𝑦)   𝑓𝑜𝑟 𝑦 > 0
 

  𝐹1(𝑦) =  {

0                                                                                              𝑓𝑜𝑟 𝑦 ≤ 0

𝑃(𝑋2 < 𝑦) = 𝑃(𝑋 < ±√𝑦) = 𝑃(−√𝑦 < 𝑋 < √𝑦)  𝑓𝑜𝑟 𝑦 > 0 

  ∴ 𝐹1(𝑦) =  {
0                                      𝑓𝑜𝑟 𝑦 ≤ 0

𝑃(−√𝑦 < 𝑋 < √𝑦)  𝑓𝑜𝑟 𝑦 > 0
 

If the random variable 𝑋 is of its type, 

  𝐹1(𝑦) =  {
0                                 𝑓𝑜𝑟 𝑦 ≤ 0

𝐹(√𝑦) − 𝐹(−√𝑦)   𝑓𝑜𝑟 𝑦 > 0
 

If the 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑋 has density 𝑓(𝑥), 

  𝑓1(𝑦) = 𝐹1
′(𝑦) 
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   = {
0                                                       𝑓𝑜𝑟 𝑦 ≤ 0 

𝐹′(√𝑦)
1

2
 𝑦−

1

2 + 𝐹′(√𝑦)
−1

2
𝑦−

1

2 𝑓𝑜𝑟 𝑦 > 0
 

  𝑓1(𝑦) =  {
0                         𝑓𝑜𝑟 𝑦 ≤ 0
𝐹(√𝑦)+𝐹

′(−√𝑦)

2√𝑦
 𝑓𝑜𝑟 𝑦 > 0

 

If random variable is of discrete type, 

 𝐹1(𝑦) = {
0                                                  𝑓𝑜𝑟 𝑦 ≤ 0

𝑃(𝑋 < √𝑦) − 𝑃(𝑋 ≤ −√𝑦)   𝑓𝑜𝑟  𝑦 > 0
 

 𝐹1(𝑦) =  {
0                                                                                     𝑓𝑜𝑟 𝑦 ≤ 0

𝑃(𝑋 < √𝑦 − [𝑃(𝑋 < −√𝑦) + 𝑃(𝑋 = −√𝑦)]      𝑓𝑜𝑟 𝑦 > 0
 

 𝐹1(𝑦) =  {
0                                                                                       𝑓𝑜𝑟 𝑦 ≤ 0

𝑃(𝑋 < √𝑦) − 𝑃(𝑋 < −√𝑦) − 𝑃(𝑋 = −√𝑦)      𝑓𝑜𝑟 𝑦 > 0
 

If the point −√𝑦 is not a jump point of 𝑋 then 𝑃(𝑋 = −√𝑦) = 0 

Exercise.  

1. If 𝑋 is a 𝑟. 𝜐 is |𝑋| is a random variable too? 

2. The probability function of the 𝑟. 𝜐 𝑋 is of the form 𝑃(𝑋 − 𝑟) =
𝑒−𝜆𝜆𝑟

𝑟!
 (𝑟 = 0,1,2… . . ). 

find the probability function of random variable (a) 𝑌 = −𝑋 (b) 𝑌 = 𝑎𝑋 + 𝑏   (c) 𝑌 =

𝑋2  (d) 𝑌 = √𝑋  (e) 𝑌 = 𝑋𝑙  (𝑙 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟) 

Remark.  

 Let 𝑥1, 𝑥2, …… be the jump points of the 𝑟. 𝜐   𝑋 and 𝑦1, 𝑦2, …… be the points 

corresponding to them according to the relation 𝑦𝑖 = 𝑥𝑖
2 

∴ 𝑃(𝑌 = 𝑦𝑖) = 𝑃(𝑋
2 = 𝑦𝑖) = 𝑃(𝑋 = −√𝑦𝑖) + 𝑃(𝑋 = √𝑦𝑖) 

Example 2. 

 Suppose that the random variable 𝑋 take an only two values𝑥1 = −1  & 𝑥2 = 1, where 

𝑃(= −1) = 𝑃(𝑥 = 1) =
1

2
. Find the distribution function of 𝑌 = 𝑋2. 

Solution. 

Let 𝑌 = 𝑋2  
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Since 𝑦1 = (−1)2 = 1; 𝑦2 = (1)
2 = 1. 

∴ the random variable  Y taken an only one value 𝑦 = 1. 

∴ 𝑃(𝑌 = 1) = 𝑃(𝑋2 = 1) 

= 𝑃(𝑋 = ± 1)  

= 𝑃(𝑋 = +1 ) + 𝑃(𝑋 = −1 )  

=
1

2
+

1

2
  

= 1  

Note: Let X be a random variable of the continuous type with density 𝑓(𝑥). 

 Consider a one-one transformation defined by a function 𝑦 = 𝑔(𝑥) which has an 

everywhere continuous derivative 𝑔(𝑥). 

Let (𝑥1, 𝑥2) be an interval such that 𝑔(𝑥) ≠ 0 for 𝑥1 ≤ 𝑥 < 𝑥2. 

Let 𝑦1 = 𝑔(𝑥1)  & 𝑦2 = 𝑔(𝑥2)  

Let 𝑥 = ℎ(𝑦) be the function inverse to the function 𝑔(𝑥). 

By our assumption, ℎ(𝑦) is finite and continuous valued and its derivative ℎ′(𝑦) is finite and 

continuous in (𝑦1, 𝑦2). 

𝑃(𝑥1 ≤ 𝑥 < 𝑥2) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥2
𝑥1

  

= ∫ 𝑓(ℎ(𝑦))ℎ′(𝑦)𝑑𝑦
𝑦2

𝑦1

…… . (1) 

Case(i): If ℎ′(𝑦) > 0, then 𝑦1 < 𝑦2. 

(1)⇒ 𝑃(𝑥1 ≤ 𝑋 < 𝑥2) = ∫ 𝑓(ℎ(𝑦))ℎ′(𝑦)𝑑𝑦
𝑦2
𝑦1

  

                                          = 𝑃(𝑦1 ≤ 𝑥 < 𝑦2), where 𝑌 = 𝑔(𝑋). 

Case(ii): If ℎ′(𝑦) < 0, then 𝑦2 < 𝑦1. 

(1)⇒ 𝑃(𝑥1 ≤ 𝑋 < 𝑥2) = ∫ 𝑓(ℎ(𝑦))ℎ′(𝑦)𝑑𝑦
𝑦2
𝑦1
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                                          = −∫ 𝑓(ℎ(𝑦))ℎ′(𝑦)𝑑𝑦
𝑦1

𝑦2

 

∴ a random variable 𝑦 = 𝑔(𝑥) has the density  function 𝑔(𝑥) = 𝑓[ℎ(𝑦)]|ℎ′(𝑦)|. 

 

1.2.5. Multidimensional Random Variable 

 

The following example illustrates the notion of a multidimensional random variable.   

Example 1.The following table contains the data concerning the distribution of the population 

Poland according to  sex and age from the census of 1931.  

Age Group Men Women 

0-4 2020 1962 

5-9 2005 1962 

10-14 1405 1372 

15-19 1474 1562 

20-29 2931 3213 

30-39 1999 2255 

40-49 1391 1596 

50-59 1052 1201 

60-69 753 875 

70 or more 386 474 

Total 15,416 16,472 

  

 The element of investigation is an inhabitant Poland in the year 1931. Every inhabitant 

of Poland is categorised in the table by two categories sex and age. We can assign values to 

this characteristic. To analyse the result of census, IBM cards are prepared for every person 

included in the census. To every characteristic and the consideration, a number is assigned on 

this card. To every man the number 1 is usually assigned and to every women the number 0. 

Similarly to every age group a certain number is assigned. 

Consider the random event that a card chosen at random correspond to a person 

belonging to a given and age group. 
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∴ To every elementary event there correspond a pair of numbers. 

Definition.  

The collection of n real single-valued function 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) defined on E is 

called 𝒏 − 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍 𝒓𝒂𝒏𝒅𝒐𝒎 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆 if the inverse image A of every generalized n-

dimensional interval I of the form (−∞,−∞,… ,−∞, 𝑎1, 𝑎2, … , 𝑎𝑛 ) is random event. 

Definition.  

The function 𝐹(𝑥, 𝑦) is defined by 𝐹(𝑥, 𝑦) = 𝑃(𝑋 < 𝑥, 𝑌 < 𝑦) is called the 

distribution function the random variable (𝑋, 𝑌). 

Remark.  

1) 𝑃(𝑥 ≤ 𝑋 < 𝑥2, 𝑦1 ≤ 𝑌 < 𝑦2) = 𝑃(𝑋 < 𝑥2, 𝑌 < 𝑦2) −

𝑃(𝑋 < 𝑥2, 𝑌 < 𝑦1) − 𝑃(𝑋 < 𝑥1, 𝑌 < 𝑦2) + 𝑃(𝑋 <

𝑥1, 𝑌 < 𝑦2)  

= 𝐹(𝑥2, 𝑦2) − 𝐹(𝑥2, 𝑦1) − 𝐹(𝑥2, 𝑦2) + 𝐹(𝑥1, 𝑦1) 

2) The function 𝐹(𝑥, 𝑦) be the distribution function of a two-dimension random variable, 

it is not difficult that this function be continuous from the left non-decreasing with 

respect to each of the variables and satisfies the inequalities 𝐹(∞,∞) = 1, 𝐹(−∞, 𝑦) =

0, 𝐹(𝑥,−∞) = 0. 

If 𝐹(𝑥, 𝑦) is a distribution function then for all values 𝑥2, 𝑥1 (𝑥2 > 𝑥1)& 𝑦2, 𝑦1(𝑦2 >

𝑦1) the relation 𝐹(𝑥2, 𝑦2) − 𝐹(𝑥2, 𝑦1) − 𝐹(𝑥1, 𝑦2) + 𝐹(𝑥1, 𝑦1) ≥ 0 must be satisfied. 

Example 2. 

Let F be a function of two variables X and Y defined by 𝐹(𝑥, 𝑦) = {
0 𝑖𝑓 𝑥 + 𝑦 ≤ 0
1 𝑖𝑓 𝑥 + 𝑦 > 0

. 

Verify that F is a distribution function or not. 

Solution. 

Clearly this function is non-decreasing continuous from the left with respect to x and y. 

𝐹(−∞, 𝑦) = 𝐹(𝑥, −∞) = 0, 𝐹(+∞,+∞) = 1. 

𝑃(−1 ≤ 𝑋 < 3, −1 ≤ 𝑌 < 3) = 𝐹(3,3) − 𝐹(+3,−1) − 𝐹(−1,3) + 𝐹(−1,−1) 

[∵ 𝑃(𝑥1 ≤ 𝑥 < 𝑥2, 𝑦1 ≤ 𝑌 < 𝑦2) = 𝐹(𝑥2, 𝑦2) − 𝐹(𝑥2, 𝑦1) − 𝐹(𝑥1, 𝑦2) + 𝐹(𝑥, 𝑦2)] 
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= 1 − 1 − 1 + 0 

= −1 ≱ 0 

The inequality is not true for this value. 

∴ 𝐹1 is not a distribution function. 

 

Theorem 1.13. 

 A real-valued function 𝐹(𝑥, 𝑦) is a distribution function of a certain two dimensional 

random variable iff 𝐹(𝑥, 𝑦) is non-decreasing and continuous atleast from left with respect to 

both 𝑥 and 𝑦, satisfies the inequality 𝐹(−∞, 𝑦) = 𝐹(𝑥,−∞) = 0, 𝐹(∞,∞) = 1 and the 

inequality 𝐹(𝑥2, 𝑦2) − 𝐹(𝑥2, 𝑦1) − 𝐹(𝑥1, 𝑦2) + 𝐹(𝑥1, 𝑦1) ≥ 0 holds for every 

(𝑥1, 𝑦1) & (𝑥2, 𝑦2), where 𝑥1 < 𝑥2  & 𝑦1 < 𝑦2. 

 

Definition. 

 The two-dimensional random variable (𝑋, 𝑌) is said to be discrete type if, with 

probability 1, it takes on pairs of values belonging to a set 𝑆 of pair that is at most countable 

and every pair (𝑥1, 𝑦𝑘) is taken with positive probability 𝑝𝑖𝑘. These pairs of values jump points 

and, their probability, jumps 

 i.e., ∑ ∑ 𝑃𝑖𝑘𝑘𝑖 = 1 

The distribution function 𝐹(𝑥, 𝑦) has the form  

 𝐹(𝑥, 𝑦) = ∑ 𝑃𝑖𝑘𝑥𝑖<𝑥
𝑦𝑘<𝑦

 

where the summation is extended over all points (𝑥𝑖 , 𝑦𝑘) for which the inequalities 𝑥𝑖 < 𝑥 and 

𝑦𝑘 < 𝑦 are satisfied. 

Definition. 

Let (𝑥𝑖 , 𝑦𝑘) where 𝑖 = 1,2,……𝑎𝑛𝑑 𝑘 = 1,2,…… be an arbitrary jump point of the 

random variable (𝑋, 𝑌) of the discrete type. The probability that the random variable (𝑋, 𝑌) 

will take on the pair of values (𝑥𝑖 , 𝑦𝑘) is called the probability function of (𝑋, 𝑌). We write 

𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑘) = 𝑃𝑖𝑘  
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Definition. 

 The two-dimensional random variable (𝑋, 𝑌) is called as the continuous type, if there 

exists a non-negative function 𝑓(𝑥, 𝑦) such that for every pair (𝑥, 𝑦) of real numbers the 

following relation is satisfied: 

 𝐹(𝑥, 𝑦) = ∫ [∫ 𝑓(𝑥, 𝑦)𝑑𝑦
𝑦

−∞
]𝑑𝑥

𝑥

−∞
 

where 𝐹(𝑥, 𝑦) is the distribution function of (𝑋, 𝑌) the function 𝑓(𝑥, 𝑦) is called the density 

function. 

 

Definition. 

 The density function 𝐹(+∞,+∞) = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 = 1
∞

−∞

∞

−∞
. 

 

Definition. 

 If the density function 𝑓(𝑥, 𝑦) is continuous at the point (𝑥, 𝑦),  
𝜕2𝐹(𝑥,𝑦)

𝜕𝑥𝜕𝑦
= 𝑓(𝑥, 𝑦). 

Remark.  

 If the function 𝑓(𝑥, 𝑦) is continuous of (𝑥, 𝑦) we have, 

𝑓(𝑥, 𝑦) = lim
∆𝑥→0
∆𝑦→0

𝐹(𝑥+∆𝑥,𝑦+∆𝑦)−𝐹(𝑥,𝑦)

∆𝑥∆𝑦
  

 = lim
∆𝑥→0
∆𝑦→0

𝑃(𝑥<𝑥+∆𝑥,𝑌<𝑦+∆𝑦)−𝑃(𝑋<𝑥,𝑌<𝑦)

∆𝑥∆𝑦
 

 = lim
∆𝑥→0
∆𝑦→0

𝑃(𝑥≤𝑋<𝑥+∆𝑥,𝑦≤𝑌<𝑦+∆𝑦)

∆𝑥∆𝑦
 

Result. 

 A function 𝐹(𝑥1, 𝑥2, … . . 𝑥𝑛) is the joint distribution function of some 𝑛 dimensional 

random variable iff 𝐹 is non decreasing & continuous from the left with respect to all the 

arguments 𝑥1, 𝑥2, ……𝑥𝑛 and satisfies the following conditions 

i) 𝐹(−∞, 𝑥2, ……𝑥𝑛) = 𝐹(𝑥1, −∞, 𝑥3, ……𝑥𝑛) = ⋯ . .= 𝐹(𝑥1, 𝑥2, ……−∞) = 0 
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𝐹(+∞,+∞,…… .+∞) = 1  

ii) For all (𝑥1, 𝑥2, …… . , 𝑥𝑛) ∈ 𝑅𝑛 and for all ℎ𝑖 > 0 (𝑖 = 1,2,… . , 𝑛) the iuequality 

𝑃(𝑥1 ≤ 𝑋1 ≤ 𝑥1 + ℎ1, …… , 𝑥𝑛 ≤ 𝑋𝑛 < 𝑥𝑛 + ℎ𝑛) = 𝐹(𝑥1 + ℎ1, ……𝑥𝑛 + ℎ𝑛) 

∑ 𝐹(𝑥1 + ℎ1, …… 𝑥𝑖−1 + ℎ𝑖−1
𝑛
𝑖=1 , 𝑥𝑖 , 𝑥𝑖+1 + ℎ𝑖+1, … . 𝑥𝑛 + ℎ𝑛) +  ∑ 𝐹(𝑥1 +

𝑛
𝑖,𝑗=1
𝑙<𝑗

ℎ1, ……𝑥𝑖 , ………+ 𝑥𝑗 , … . 𝑥𝑛 + ℎ𝑛) + (−1)
𝑛𝐹(𝑥1, …… 𝑥𝑛) ≥ 0  

Remark. Difference between thee one dimensional & multi-dimensional distribution function: 

 If one dimensional random variable 𝑋 does not have jump points then its distribution 

function 𝐹(𝑥) is continuous everywhere. 

 But the distribution function, 𝐹(𝑥1, 𝑥2, ……𝑥𝑛) can have discontinuity points even if 

the random variable (𝑋1, 𝑋2, …… . 𝑋𝑛) does not have jump points. 

 This is possible if 𝑋𝑗1 = 𝑎1, 𝑋𝑗2 = 𝑎2, ……𝑋𝑗𝑟 = 𝑎𝑟, where 1 ≤ 𝑟 ≤ 𝑛 and 𝑎1, 𝑎2, … . 𝑎𝑛 

are constants such that 𝑃(𝑋𝑗1 = 𝑎1, 𝑋𝑗2 = 𝑎2, ……𝑋𝑗𝑟 = 𝑎𝑟) > 0. 

Example 3. 

 Let us consider the random vector (𝑋, 𝑌) with distribution function 𝐹(𝑥, 𝑦) of the form 

    

𝐹(𝑥, 𝑦)

=

{
 
 
 

 
 
 

   
0   𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑚𝑎𝑖𝑛𝑠 (−∞ < 𝑥 ≤ 0,−∞ < 𝑦 < +∞ 𝑎𝑛𝑑 (0 < 𝑥 < +∞,−∞ < 𝑦 ≤ 0

𝑥𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 (0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤
1

2
)                                                                         

𝑥

2
  𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 (0 ≤ 𝑥 ≤ 1,

1

2
≤ 𝑦 < ∞                                                                            

𝑦  
1  

𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 (1 < 𝑥 < ∞, 0 ≤ 𝑦 ≤ 1)                                                                           

𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 (𝑥 > 1, 𝑦 > 1)                                                                                            

 

The random vector (𝑋, 𝑌) takes on with probability 
1

2
, appoint in (𝑥 = 1,

1

2
≤ 𝑦 ≤ 1) 

Clearly, every point with coordinates (1, 𝑦) where 
1

2
≤ 𝑦 < ∞ is a discontinuity point of 

distribution function 𝐹(𝑥, 𝑦), although the random vector (𝑋, 𝑌) has no jump points. 
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Definition. 

 If all the vertices of the generalized interval, given by 𝑥1 ≤ 𝑋1 < 𝑥1 + ℎ1, 𝑥2 ≤ 𝑋2 <

𝑥2 + ℎ2, …… . . , 𝑥𝑛 ≤ 𝑋𝑛 < 𝑥𝑛 + ℎ𝑛 are continuity points of the distribution function 

𝐹(𝑥1, 𝑥2, ……𝑥𝑛) for the surface 𝑆 of the interval we have  

𝑃[(𝑥1, 𝑥2, …… , 𝑥𝑛) ∈ 𝑆] = 0 … (1) 

 

Definition. An interval, generalized or in the usual sense, for which the relation (1) is called a 

continuity interval. 

 In the above example the rectangle with vertices (1,2), (1,3), (2,2) and (2,3) is a 

continuity interval by the above definition 

But the vertices (1,2) and (1,3) are discontinuity points of distribution function 

𝐹(𝑥, 𝑦). 

 

1.2.6. Marginal distribution 

  

Let (𝑋, 𝑌) be a two-dimensional random variable of the discrete type which can take 

on the values (𝑥𝑖 , 𝑦𝑘). Then we have 

𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑘) = 𝑃𝑖𝑘 

Define,  

𝑃.𝑘 = ∑ 𝑃𝑖𝑘𝑖 , 𝑃𝑖. = ∑ 𝑃𝑖𝑘𝑘      … (1)  

We have 

𝑃.𝑘 = ∑ 𝑃𝑖𝑘𝑖   

 = 𝑃(𝑋 = 𝑥1, 𝑌 = 𝑦𝑘) + 𝑃(𝑋 = 𝑥2, 𝑌 = 𝑦𝑘) + ⋯ 

Hence,  𝑃.𝑘 = 𝑃(𝑌 = 𝑦𝑘) when X takes on any of the possible values.  

Furthermore, it is obvious that, 

∑ 𝑃.𝑘𝑖 = ∑ ∑ 𝑃𝑖𝑘𝑖𝑘 = 1  
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The collection of numbers 𝑃.𝑘 is then a set of jumps of a probability function, the distribution 

determined by these jumps is called marginal distribution of random variable 𝑌. 

(𝑖. 𝑒. , 𝑃.𝑘 = 𝑃(𝑌 = 𝑦𝑘))    

 The collection of numbers 𝑃𝑖 is then a set of jumps of a probability function. The 

distribution determined by these jumps is called Marginal distribution of random variable 𝑌.  

 (𝑖. 𝑒. , 𝑃𝑖. = 𝑃(𝑋 = 𝑥𝑖)). 

Example 1. 

Suppose that we have 21 slips of paper. An each slip one of the number 1,2,…… 21 is 

written and there are no two slips marked with the same number. Find the marginal distribution 

of divisibility by 3 & 2. 

Solution.  

Let us assign to the appearance of a even number the number 1 and to the appearance 

of an odd number the number 0. 

Let the random variable 𝑋 takes on two values 𝑥1 = 1 & 𝑥2 = 0 

Let the random variable 𝑌 takes on the value 𝑦1 = 1 when a number divisible by 3 is chosen 

and the value 𝑦2 = 0 otherwise  

 Among the 21 numbers, we have the following types of numbers: 

 Number divisible 

by 2 𝑥1 

Number divisible 

by 2 𝑥2 
Total 

No. divisible by 3 3 4 7 

No. indivisible by 3 7 7 14 

Total 10 11 21 

 

Probability of divisible by 2 & 3 

𝑃11 = 𝑃(𝑋 = 1, 𝑌 = 1) =
3

21
 

Probability of divisible by 2 not divisible by 3 

𝑃12 = 𝑃(𝑋 = 1, 𝑌 = 0) =
7

21
 

Probability of not divisible by 2 and not divisible by 3 
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𝑃22 = 𝑃(𝑋 = 0, 𝑌 = 0) =
7

21
 

Marginal distribution of divisible by 3 

𝑃.1 = 𝑃11 + 𝑃21 =
3

21
+
4

21
=
7

21
 

Marginal distribution of divisible by 2 

𝑃1. = 𝑃11 + 𝑃12 =
3

21
+
7

21
=
10

21
 

The marginal distribution of not divisible by 3 

𝑃.2 = 𝑃12 + 𝑃22 =
7

21
+
7

21
=
14

21
 

Marginal distribution of not divisible by 2 

𝑃2. = 𝑃21 + 𝑃22 =
4

21
+

7

21
=

11

21
. 

 

Definition. 

 Let 𝐹(𝑥, 𝑦) be the distribution function of a 2-dimensional random variable 

(𝑋, 𝑌). The distribution function of the marginal distribution of 𝑋 has the form 

𝐹(𝑥,∞) = 𝑃(𝑋 < 𝑥, 𝑌 < ∞) 

If (𝑋, 𝑌) is a random variable of a discrete type takes a form 

𝐹(𝑥,∞) = ∑∑𝑃𝑖𝑘
𝑘𝑥𝑖<𝑥

 

where the summation is extended over all the values of 𝑘, and those values of 𝑖 for 

which 𝑥𝑖 < 𝑥 

If (𝑋, 𝑌) is a random variable of the continuous type, 

𝐹(𝑥,∞) = ∫ [∫ 𝑓(𝑥, 𝑦)𝑑𝑦
∞

−∞
]𝑑𝑥

𝑥

−∞
  

 The density of the marginal distribution of the random variable 𝑋 has the form 

𝑓1(𝑥) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑦
∞

−∞

 

 Similarly, 𝐹(∞, 𝑦) = ∫ [∫ 𝑓(𝑥, 𝑦)𝑑𝑥] 𝑑𝑦
∞

∞

𝑦

−∞
  

 The density of the marginal distribution of the random variable 𝑌 has the form  

𝑓1(𝑦) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
∞

−∞
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Remark. 

 Let 𝐹(𝑥1, 𝑥2, …… , 𝑥𝑛) be the D.F of random vector 𝑋1, 𝑋2, …… , 𝑋𝑛 where 𝑛 > 2. Then 

we can obtain (
𝑛
𝑘
) k-dimensional marginal distribution for 𝑘 = 1,2, ……𝑛 − 1. 

For example, the distribution function of random vector (𝑋1, 𝑋2) has the form 

𝐹(𝑥1, 𝑥2, ∞,…… ,∞) = 𝑃(𝑋1 < 𝑥1, 𝑋2 < 𝑥2, 𝑋3 < ∞,…… . , 𝑋𝑛 < ∞) 

 

1.2.7. Conditional distribution 

  

Let (𝑋, 𝑌) be a two dimensional random vector of the discrete type, where 𝑋 can take 

on the values 𝑥𝑖(𝑖 = 1,2…… )& 𝑌 can take on the values 𝑦𝑘(𝑘 = 1,2, …… . ). 

Let 𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑘) = 𝑃𝑖𝑘 

Then the marginal distributions are  

𝑃(𝑋 = 𝑥𝑖) = 𝑃𝑖. =∑𝑃𝑖𝑘
𝑘

 & 𝑃(𝑌 = 𝑦𝑘) = 𝑃.𝑘 =∑𝑃𝑖𝑘
𝑖

 

Let us define for every 𝑖 𝑎𝑛𝑑 𝑘 the probabilities  

 𝑃(𝑋 = 𝑥𝑖|𝑌 = 𝑦𝑘) =
𝑃𝑖𝑘

𝑃.𝑘
    … (1) 

 𝑃(𝑌 = 𝑦𝑘|𝑋 = 𝑥𝑖) =
𝑃𝑖𝑘

𝑃𝑖.
   … (2) 

when 𝑦𝑘 is fixed and 𝑥𝑖 varies over all possible jump points, (1) is the probability functions of 

the random vector 𝑋 of the discrete type under the condition 𝑌 = 𝑦𝑘 

 When 𝑥𝑖 is fixed and 𝑦𝑘 varies over all possible jump points, (2) is the probability 

functions of the random vector 𝑌 of the discrete type under the condition 𝑋 = 𝑥𝑖 . 

R.H.S of (1) and (2) are non-negative numbers and bounded by 1 

Since, ∑ 𝑃(𝑋 = 𝑥𝑖|𝑌 = 𝑦𝑘) =𝑖
∑ 𝑃𝑖𝑘𝑖

𝑃.𝑘
=

𝑃.𝑘

𝑃.𝑘
= 1 

 ∑ 𝑃(𝑌 = 𝑦𝑘|𝑋 = 𝑥𝑖) =
∑ 𝑃𝑖𝑘𝑘

𝑃𝑖.
𝑘 =

𝑃𝑖.

𝑃𝑖.
= 1. 
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Definition. (Conditional distribution function of 𝒀) 

Consider the interval [𝑥, 𝑥 + ℎ) and the event 𝑥 < 𝑋 < 𝑥 + ℎ. Suppose that 

𝑃(𝑥 ≤ 𝑋 < 𝑥 + ℎ) > 0 

  

For every value 𝑦 and every interval [𝑥, 𝑥 + ℎ) we define the conditional probability 

 𝑃(𝑌 < 𝑦|𝑥 ≤ 𝑋 < 𝑥 + ℎ) =
𝑃(𝑌<𝑦,𝑥≤𝑋<𝑥+ℎ)

𝑃(𝑥≤𝑋≤𝑥+ℎ)
 

           =
∫ [∫ 𝑓(𝑥,𝑦)𝑑𝑦] 

𝑦
−∞

𝑑𝑥
𝑥+ℎ
𝑥

∫ [∫ 𝑓(𝑥,𝑦)𝑑𝑦
∞

−∞
]𝑑𝑥

𝑥+ℎ

𝑥

     …… (1) 

 Suppose that the density function 𝑓(𝑥, 𝑦) is everywhere continuous and the marginal 

density 𝑓1(𝑥) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑦
∞

−∞
 is a cts function of 𝑥. 

(1) ⇒ 

lim
ℎ→0

𝑃(𝑌 < 𝑦|𝑥 ≤ 𝑋 < 𝑥 + ℎ) = lim
ℎ→0

lim
ℎ→0

∫ [∫ 𝑓(𝑥, 𝑦)𝑑𝑦
𝑦

−∞
]𝑑𝑥

𝑥+ℎ

𝑥

∫ [∫ 𝑓(𝑥, 𝑦)𝑑𝑦
∞

−∞
]𝑑𝑥

𝑥+ℎ

𝑥

 

 𝐹(𝑦\𝑥) =
∫ 𝑓(𝑥,𝑦)𝑑𝑦
𝑦

−∞

𝑓1(𝑥)
   …… (2) 

For a fixed value of 𝑋 equation (2)  is called conditional distribution function of random 

variable 𝑌. 

If 𝑔(𝑦|𝑥) is the density function of random variable 𝑌 

 𝑔(𝑦|𝑥) =
𝑓(𝑥,𝑦)

𝑓1(𝑥)
 

From (2), 

 𝑓1(𝑥)𝐹(𝑦|𝑥) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑦
𝑦

−∞
 

 ∫ 𝑓1(𝑥) 𝐹(𝑦|𝑥)𝑑𝑥
∞

−∞
= ∫ (∫ 𝑓(𝑥, 𝑦)𝑑𝑦

𝑦

−∞
)𝑑𝑥

∞

−∞
 

    = 𝐹2(𝑦) 

 𝑖. 𝑒. , 𝐹2(𝑦) = ∫ 𝑓1(𝑥)𝐹(𝑦|𝑥)𝑑𝑥
∞

−∞
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Remark. Let us consider the 3-dimensional random vector (𝑋1, 𝑋2, 𝑋3) of the continuous with 

the density 𝑓(𝑥1, 𝑥2, 𝑥3) which is everywhere continuous and with all the marginal densities 

continuous. 

𝐹(𝑥3|𝑥1, 𝑥2) =
∫ 𝑓(𝑥1, 𝑥2, 𝑥3)𝑑𝑥3
𝑥3
−∞

∫ 𝑓(𝑥1, 𝑥2, 𝑥3)𝑑𝑥3
∞

−∞

 

    

𝐹(𝑥3, 𝑥2|𝑥1) =
∫ (∫ 𝑓(𝑥1, 𝑥2, 𝑥3)𝑑𝑥3

𝑥3
−∞

)𝑑𝑥2
𝑥2
−∞

∫ ∫ 𝑓(𝑥1, 𝑥2, 𝑥3)𝑑𝑥3
∞

−∞
𝑑𝑥2

∞

−∞

 

 

Example 1. 

 Suppose that we have 21 slips of papers. An each, slip one of the numbers 1,2,…… 21 

is written, and there are no two slips marked with the same number. What is the probability 

that a no. chosen at random will be divisible by 3 given that it is even. 

Solution. 

 Let us assign to the appearance of a even number the number 1 and to the appearance 

of an odd number the number 0. 

 Let the random variable 𝑋 takes on two values 𝑥1 = 1 & 𝑥2 = 0 

 Let the random variable 𝑌 takes on the values, when a number divisible by 3 is chosen 

and the value 𝑦2 = 0 otherwise. 

 Among the 21 numbers, we have 

 Number divisible 

by 2 𝑥1 

Number divisible 

by 2 𝑥2 
Total 

No. divisible by 3 

𝑦1 
3 4 7 

No. indivisible by 3 

𝑦2 
7 7 14 

Total 10 11 21 

Probability of a no. chosen at random is divisible by 3 given that it is even. 
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 𝑃(𝑌 = 1|𝑋 = 1) =
𝑃(𝑌=1,𝑋=1)

𝑃(𝑋=1)
 

   =
𝑃11

𝑃1
=

3

10
 

Probability of a number chosen at random is not divisible by 3 given that it is even. 

 𝑃(𝑌 = 0|𝑋 = 1) =
𝑃(𝑌=0,𝑋=1)

𝑃(𝑋=1)
=

7

10
 

Conditional distribution of odd number into those divisible and not divisible by 3. 

 𝑃(𝑌 = 1|𝑋 = 0) =
𝑃(𝑌=1,𝑋=0)

𝑃(𝑋=0)
=

4

11
 

 𝑃(𝑌 = 0|𝑋 = 0) =
𝑃(𝑌=0|𝑋=0) 

𝑃(𝑋=0)
=

7

11
. 

 

Definition. 

 Let 𝑋 be a random variable and S is a Borel set on the 𝑥 −axis such that 0 <

𝑃(𝑋 ∈ 𝑆) < 1. The conditional distribution defined for any real 𝑍 by the expression 𝑃(𝑋 <

𝑥|𝑋 ∈ 𝑆) is called the truncated distribution of 𝑋. 

If 𝑋 is of the discrete type with jump points 𝑥𝑖 and jumps 𝑃𝑖, the probability function of the 

truncated distribution of 𝑋 is of the form  

𝑃(𝑋 = 𝑥𝑖|𝑋 ∈ 𝑆) =
𝑃(𝑋 = 𝑥𝑖 , 𝑋 ∈ 𝑆)

𝑃(𝑋 ∈ 𝑆)
 

                 𝑆 = {

𝑃𝑖

∑ 𝑃𝑗𝑥𝑖∈𝑆
  𝑖𝑓 𝑥𝑖 ∈ 𝑆

0     𝑖𝑓 𝑥𝑖 ∉ 𝑆
 

If 𝑋 is of continuous type with the density 𝑓(𝑥), then  

𝑃(𝑋 < 𝑥|𝑋 ∈ 𝑆) =
𝑃(𝑋 < 𝑥, 𝑋 ∈ 𝑆)

𝑃(𝑋 ∈ 𝑆)
 

      =
∫ 𝑓(𝑥)𝑑𝑥(−∞,𝑥)∩𝑆

∫ 𝑓(𝑥)𝑑𝑥
𝑆

 

The density 𝑔(𝑥) of this distribution takes the form 
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𝑔(𝑥) = {

𝑓(𝑥)

∫ 𝑓(𝑥)𝑑𝑥
𝑆

 𝑖𝑓 𝑥 ∈ 𝑆

0             𝑖𝑓 𝑥 ∉ 𝑆

 

 

Example 2. 

 Consider the random variable 𝑋 with density  

𝑓(𝑥) = {
1          0 ≤ 𝑥 ≤ 1
0      𝑥 > 0, 𝑥 > 1

 

Let 𝑆 = [0,
1

2
), then we have 

 𝑃(𝑋 ∈ 𝑆) = ∫ 𝑑𝑥

1
2

0

=
1

2
 

The density 𝑔(𝑥) of the truncated distribution of 𝑋 is of the form 

𝑔(𝑥) = {
2          0 ≤ 𝑥 ≤

1

2

0      𝑥 < 0, 𝑥 >
1

2

 

 

1.2.8. Independent random variables 

  

Let 𝐹(𝑥, 𝑦), 𝐹1(𝑥) 𝑎𝑛𝑑 𝐹2(𝑦) denote respectively the two-dimensional 

distribution function of the random variable (𝑋, 𝑌) and the marginal distribution 

function of the random variables 𝑋 and 𝑌. 

Definition. 

 The random variable 𝑋 and 𝑌 are said to be independent proof for every 

pair (𝑥, 𝑦) of real numbers the equality  

𝐹(𝑥, 𝑦) = 𝐹1(𝑥)𝐹2(𝑦)……(1) 

 is satisfied. 
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Remark. 

 Let (𝑎, 𝑏) 𝑎𝑛𝑑 (𝑐, 𝑑), where 𝑎 < 𝑐 and 𝑏 < 𝑑 be two arbitrary point in the 

plane (𝑥, 𝑦). We have  

 𝑃(𝑎 ≤ 𝑋 ≤ 𝑐) = 𝐹1(𝑐) − 𝐹1(𝑎) 

 𝑃(𝑏 ≤ 𝑌 < 𝑑) = 𝐹2(𝑑) − 𝐹2(𝑏) 

Multiplying the RHS and LHS of these relation and applying (1) gives, 

𝑃(𝑎 ≤ 𝑋 < 𝑐)𝑃(𝑏 ≤ 𝑌 < 𝑑)  

            = [𝐹1(𝑐) − 𝐹1(𝑎)][𝐹2(𝑑) − 𝐹2(𝑏)]  

 = 𝐹1(𝑐)𝐹2(𝑑) − 𝐹1(𝑐)𝐹2(𝑏) − 𝐹1(𝑎)𝐹2(𝑑) + 𝐹1(𝑎)𝐹2(𝑏)  

  = 𝐹(𝑐, 𝑑) − 𝐹(𝑐, 𝑏) − 𝐹(𝑎, 𝑑) + 𝐹(𝑎, 𝑏)    

We know that, 

𝑃(𝑥1 ≤ 𝑋 < 𝑥2, 𝑦1 ≤ 𝑌 < 𝑦2)

= 𝐹(𝑥1, 𝑦2) − 𝐹(𝑥2, 𝑦1) − 𝐹(𝑥1, 𝑦2) + 𝐹(𝑥1, 𝑦1) 

We obtain, 

𝑃(𝑎 ≤ 𝑋 < 𝑐)𝑃(𝑏 ≤ 𝑋 < 𝑑) = 𝑃(𝑎 ≤ 𝑋 < 𝑐, 𝑏 ≤ 𝑌 < 𝑑)……(2) 

Remark. 

 Let us consider a tow dimensional random variable (𝑋, 𝑌) of discrete type 

with jump points (𝑥𝑖 , 𝑦𝑘) and jumps 𝑃𝑖𝑘. Suppose that 𝑋 and 𝑌 are independent. 

Then in the special case of (2) for which the rectangles (𝑎 ≤ 𝑋 < 𝑐, 𝑏 ≤ 𝑌 < 𝑑) 

and reduced to the points (𝑋 = 𝑎, 𝑌 = 𝑏), we obtain the equality 

𝑃𝑖𝑘 = 𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑘)  

       = 𝑃(𝑋 = 𝑥𝑖)𝑃(𝑌 = 𝑦𝑘) 
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       = 𝑃𝑖.𝑃.𝑘   …… (3) 

for every pair (𝑥𝑖 , 𝑦𝑘). The equality (3) is satisfied if for every pair (𝑥𝑖 , 𝑦𝑘), (1) 

is also satisfied.  

 We have to shown that if (𝑋, 𝑌) is a random variable of the discrete type, 

equality (3) holding for every pair (𝑥𝑖 , 𝑦𝑘) is a necessary and sufficient condition 

for the independence of the random variable 𝑋 and 𝑌. 

For every pair of numbers (𝑖, 𝑘), we obtain 

 𝑃(𝑋 = 𝑥𝑖|𝑌 = 𝑦𝑘) =
𝑃(𝑋=𝑥𝑖,𝑌=𝑦𝑘)

𝑃(𝑌=𝑦𝑘)
 

    =
𝑃𝑖.𝑃.𝑘

𝑃.𝑘
= 𝑃𝑖. 

    = 𝑃(𝑋 = 𝑥𝑖)   …… (4𝑎) 

 𝑃(𝑌 = 𝑦𝑘 , 𝑋 = 𝑥𝑖) =
𝑃(𝑌=𝑦𝑘,𝑋=𝑥𝑖)

𝑃(𝑋=𝑥𝑖)
  

    =
𝑃.𝑘𝑃𝑖.

𝑃𝑖.
= 𝑃.𝑘 = 𝑃(𝑌 = 𝑦𝑘)   …… (4𝑏) 

From (4a) and (4b) it follows that, if the random variable 𝑋 and 𝑌 are independent 

the distribution of 𝑋 is same for all values of the random variable 𝑌 

 Thus no value obtained for the variable 𝑌 gives any information about the 

distribution of the variable 𝑋 and conversely, the condition distribution of the 

random variable 𝑌 is identically for all values of 𝑋. 

 

Theorem 1.14. 

 If (𝑋, 𝑌) is a random variable of the continuous type with density function 

𝑓(𝑥, 𝑦) is every where continuous, the validity of  
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𝜕2𝐹(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
= 𝑓(𝑥, 𝑦) = 𝐹′(𝑥)𝐹′(𝑦) = 𝐹1(𝑥)𝐹2(𝑦) 

for arbitrary point (𝑥, 𝑦) is a necessary and sufficient condition for the 

independent of random variable 𝑋 and 𝑌.  

Proof. 

 If the random variable (𝑋, 𝑌) is of the continuous type differentiation of 

expression 

 𝐹(𝑥, 𝑦) = 𝐹1(𝑥)𝐹2(𝑦) 

with respect to 𝑥, 𝑦, with the possible exception of the set of points at which the 

density function 𝑓(𝑥, 𝑦) is not continuous, gives 

𝜕2𝐹(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
= 𝑓(𝑥, 𝑦) = 𝐹1

′(𝑥)𝐹1
′(𝑦) = 𝑓1(𝑥)𝑓2(𝑦) 

Conversely, let 
𝜕2𝐹(𝑥,𝑦)

𝜕𝑥𝜕𝑦
= 𝑓1(𝑥)𝑓2(𝑦). 

Then 𝐹(𝑥, 𝑦) = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑦

−∞

𝑥

−∞
 

 

                       = ∫ [∫ 𝑓1(𝑥)𝑓2(𝑦)𝑑𝑦] 𝑑𝑥
𝑦

−∞

𝑥

−∞
  

  = ∫ 𝑓1(𝑥)𝑑𝑥
𝑥

−∞
∫ 𝑓2(𝑦)𝑑𝑦
𝑦

−∞
  

𝑖. 𝑒. , 𝐹(𝑥, 𝑦) = 𝐹1(𝑥)𝐹2(𝑦)  

∴ If (𝑋, 𝑌) is a random variable of the continuous type whose density function 

𝑓(𝑥, 𝑦) is everywhere continuous. 

Example 1. 

 Consider the two consecutive tosses of a coin. The random variable 𝑋 takes 

on the value 0 or 1 according to whether heads or tails appear as a result of the 
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first toss. The random variable 𝑌 takes on the value 0 or 1 according to whether 

heads or tails appear as a result of the second toss. 

∴ The two-dimensional random variable (𝑋, 𝑌) may take on the values 

(1,1), (1,0), (0,1), (0,0). 

The probability of each of these events is the same and hence equals 
1

4
. 

sBoth 𝑋and 𝑌 take on the values 0 and 1 with probability 
1

2
. Thus we have, 

 𝑃(𝑋 = 1, 𝑌 = 1) =
1

4
=

1

2
.
1

2
= 𝑃(𝑋 = 1)𝑃(𝑌 = 1) 

 𝑃(𝑋 = 1, 𝑌 = 0) =
1

4
= 𝑃(𝑋 = 1)𝑃(𝑌 = 0) 

 𝑃(𝑋 = 0, 𝑌 = 1) =
1

4
= 𝑃(𝑋 = 0)𝑃(𝑌 = 1) 

 𝑃(𝑋 = 0, 𝑌 = 0) =
1

4
= 𝑃(𝑋 = 0)𝑃(𝑌 = 0) 

 ∴ 𝑋 and 𝑌 are independent 

Remark. 

 Let 𝑋1 and 𝑋2 be two independent random variables. Consider two single-

valued functions 𝑌1 = 𝑔1(𝑥1) and 𝑌2 = 𝑔2(𝑥2). 𝑌1 and 𝑌2 are also random 

variable. Show that 𝑌1 and 𝑌2 are independent. 

Proof  

 Let ℎ1(−∞, 𝑦1) and ℎ2(−∞, 𝑦2) be the Borel sets into which the functions 

inverse to 𝑔1 and 𝑔2 map the intervals (−∞, 𝑦1) and (−∞, 𝑦2). 

∴ 𝑃(𝑌1 < 𝑦1, 𝑌2 < 𝑦2) = 𝑃[𝑔1(𝑋1) < 𝑦1, 𝑔2(𝑋2) < 𝑦2]  

              = 𝑃[𝑋1 ∈ ℎ1(−∞, 𝑦1), 𝑋2 ∈ ℎ2(−∞,𝑦2)] 

                   = 𝑃[𝑋1 ∈ ℎ1(−∞,𝑦1)]𝑃[𝑋2 ∈ ℎ2(−∞, 𝑦2)] 
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= 𝑃(𝑌1 < 𝑦1)𝑃(𝑌2 < 𝑦2).                

Definition  

 The random variable 𝑋1, 𝑋2, … . . , 𝑋𝑛 are called independent it for 𝑛 

arbitrary real numbers (𝑥1, 𝑥2, … . . , 𝑥𝑛) the following relation is satisfied: 

𝐹(𝑥1, 𝑥2, … . . , 𝑥𝑛) = 𝐹1(𝑥1)𝐹2(𝑥2)……𝐹𝑛(𝑥𝑛), 

where 𝐹(𝑥1, 𝑥2, … . . , 𝑥𝑛) is the distribution function of the random variable 

(𝑋1, 𝑋2, … . . , 𝑋𝑛) and 𝐹1(𝑥1), ……𝐹𝑛(𝑥𝑛) are the marginal distribution function 

of 𝑋1, 𝑋2, … . . , 𝑋𝑛. 

Example.  

 If the random variable 𝑋1, 𝑋2, … . . , 𝑋𝑛 are independent then for every 𝑠 ≤

𝑛 the random variable 𝑋𝑘1 , 𝑋𝑘2 , … . . , 𝑋𝑘𝑠, where 1 ≤ 𝑘1 < 𝑘2 < ⋯ . . < 𝑘𝑠 ≤ 𝑛 

For simplicity is notation assume that 𝑘1 = 1, 𝑘2 = 2,… . . 𝑘𝑠 = 𝑠 

𝐹(𝑥1, 𝑥2, …… , 𝑥𝑠 +∞1, …… .+∞)  

 = lim
𝑥𝑠+1→∞1,…..𝑥𝑛→∞

𝐹(𝑥1, 𝑥2, … . . , 𝑥𝑠, 𝑥𝑠+1)   

= lim
𝑥𝑠+1→∞1,…..𝑥𝑛→∞

[𝐹1(𝑥1)𝐹2(𝑥2)……𝐹𝑠(𝑥𝑠)𝐹𝑠+1(𝑥𝑠+1)… . . 𝐹𝑛(𝑥𝑛)]   

= 𝐹1(𝑥1)𝐹2(𝑥2)……𝐹𝑠(𝑥𝑠)𝐹𝑠+1(+∞) 𝐹𝑛(+∞)  

= 𝐹1(𝑥1)𝐹2(𝑥2)……𝐹𝑠(𝑥𝑠).  

We now give the definition of independent of a countable no. of random variables. 

Definition. 

 The random variable 𝑋1, 𝑋2, … . . , 𝑋𝑛 are called independent if for ever 𝑛 =

2,3…… the random variable 𝑋1, 𝑋2, … . . , 𝑋𝑛 are independent. 

 

Definition. 
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 The random vectors 𝑋 = (𝑋1, 𝑋2, … . . , 𝑋𝑗) and 𝑌 = (𝑌1, 𝑌2, … . . , 𝑌𝑟) are 

independent if for every 𝑗 + 𝑟 real numbers. 𝑥1, 𝑥2, … . . , 𝑥𝑗 , 𝑦1, 𝑦2, … . . , 𝑦𝑟 we 

have 

 𝐹(𝑥1, 𝑥2, … . . , 𝑥𝑗 , 𝑦1, 𝑦2, … . . , 𝑦𝑟) = 𝐺(𝑥1, 𝑥2, … . . , 𝑥𝑗)𝐻( 𝑦1, 𝑦2, … . . , 𝑦𝑟) 

where 𝐹, 𝐺 𝑎𝑛𝑑 𝐻 are the distribution function of the random vectors 

(𝑋1, 𝑋2, … . . , 𝑋𝑗 , 𝑌1, 𝑌2, … . . , 𝑌𝑟), (𝑋1, 𝑋2, … . . , 𝑋𝑗) and (𝑌, 𝑌2, … . . , 𝑌𝑟) 

respectively. 

 

1.2.9. Functions of Multidimensional Random Variables 

Here we give the formula for the two-dimensional probability density of a function of 

a random variable (X, Y) of the continuous type. Let 

 𝑈1  =  𝑔1(𝑋, 𝑌),     𝑈2 = 𝑔2(𝑋, 𝑌) …..(1) 

be a continuous one-to-one mapping of the random variable (X, Y) with density𝑓(𝑥, 𝑦). 

Suppose that the functions 𝑔1 and 𝑔2 have continuous partial derivatives with respect to 𝑥 

and 𝑦, and let (𝑎 ≤ 𝑋 < 𝑏, 𝑐 ≤ 𝑌 < 𝑑) be a rectangle on which the Jacobian of the 

transformation (1) is different from zero. 

Denote by 𝑥 = ℎ1(𝑢1, 𝑢2) and 𝑦 = ℎ2(𝑢1, 𝑢2) the inverse transformation. By our 

assumptions, the functions ℎ1 and ℎ2 are also one-to-one and have continuous partial 

derivatives with respect to 𝑢1 and 𝑢2. Denote by 𝐽 the Jacobian of the inverse transformation 

𝐽 = ||

𝜕𝑥

𝜕𝑢1

𝜕𝑥

𝜕𝑢2
𝜕𝑦

𝜕𝑢1

𝜕𝑦

𝜕𝑢2

|| 

By our assumptions, this Jacobian is finite and continuous in the domain 𝑆 of the plane 

(𝑢1, 𝑢2), where 𝑆 is the image of the rectangle (𝑎 ≤   𝑋 <  𝑏, 𝑐 ≤   𝑌 <  𝑐) given by 

transformation (l). We have 

𝑃(𝑎 ≤ 𝑋 < 𝑏, 𝑐 ≤ 𝑌 < 𝑑) = ∫ [∫ 𝑓(𝑥, 𝑦)𝑑𝑦
𝑑

𝑐

] 𝑑𝑥
𝑏

𝑎
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 = ∬ 𝑓[ℎ1(𝑢1, 𝑢2), ℎ2(𝑢1, 𝑢2)]|𝐽|𝑑𝑢1𝑑𝑢2(𝑆)
…..(2).   

It follows from (2) that the two-dimensional density of the random variable (𝑈1, 𝑈2) has the 

form 

 𝑟(𝑢1, 𝑢2) = 𝑓[ℎ1(𝑢1, 𝑢2), ℎ2(𝑢1, 𝑢2)]|𝐽| …… (3) 

We now investigate the distribution of the sum, difference, product, and ratio of two random 

variables. They are given here as examples of continuous functions of multidimensional 

random variables, but at the same time the formulas involved are very important in probability 

theory and its applications. 

Example 1.  

Consider again two consecutive throws of a die. Let the random variable 𝑋 correspond to 

the result of the first throw and 𝑌 to the result of the second throw. The random variables 𝑋 

and 𝑌 are independent. Both 𝑋 and 𝑌 take on the values 1,…… ,6 each with probability 
1

6
. 

Hence the two dimensional random variable (𝑋, 𝑌) can take on the pairs of values (𝑖, 𝑘), where 

𝑖 and 𝑘 run over all integers from 1 to 6. Let us form the value of the sum 𝑖 +  𝑘 for every 

possible pair (𝑖, 𝑘). All possible values of the sum 𝑖 +  𝑘 form the set of possible values of a 

new random variable which will be called the sum of the random variables 𝑋 and 𝑌. This sum 

is again a one-dimensional random variable and takes on the following values: 

2,3,4, …… ,11,12. 

Let 𝑍 =  𝑋 +  𝑌. We shall compute the probability function of 𝑍. Because of the 

independence of 𝑋 and 𝑌 we have 

𝑃(𝑍 = 2) = 𝑃(𝑋 = 1)𝑃(𝑌 = 1) =
1

36
,      

𝑃(𝑍 = 3)  = 𝑃(𝑋 = 1, 𝑌 = 2) + 𝑃(𝑋 = 2, 𝑌 = 1)  =
1

18
, 

P(Z = 4) = 𝑃(𝑋 = 1, 𝑌 = 3) + 𝑃(𝑋 = 2, 𝑌 = 2) + 𝑃(𝑋 = 3, 𝑌 = 1) =
1

12
, 

…………………………………………………………………………………… 

P(Z = 12) = 𝑃(𝑋 = 6, 𝑌 = 6) =
1

36
. 

Then 

P(Z = 2) + 𝑃(𝑍 = 3) +⋯… .+𝑃(𝑍 = 12) = 1 

In the example of the double throw of a die we could also have considered the random 

variable V =  X —  Y. The set of all possible values of this random variable consists of all 
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possible values of the difference of the numbers i and k. The random variable V then takes on 

the values 

−5,−4,…… ,0,1,2, …… . ,5. 

For example 

P(V = 0) = 𝑃(𝑋 = 1, 𝑌 = 1) + 𝑃(𝑋 = 2, 𝑌 = 2) + 𝑃(𝑋 = 3, 𝑌 = 3) 

            +P(X = 4, Y = 4) + 𝑃(𝑋 = 5, 𝑌 = 5) + 𝑃(𝑋 = 6, 𝑌 = 6) =
1

6
, 

P(V = −5) = 𝑃(𝑋 = 1, 𝑌 = 6) =
1

36
. 

Then 

Σk=−5
5  𝑃(𝑉 = 𝑘) = 1 

Similarly, we could have considered the probability function of the random variable T =  XY 

and of S = Y|X 

We can see from this example what is understood by the sum, difference, product, and ratio 

of two random variables. Thus, the random variable X +  Y is a function of the two-

dimensional random variable (X, Y). The set of possible values of X +  Y is formed from all 

possible values of the sum x + y , where x is a possible value of X and y is a possible value of 

Y. Similarly, the sum of any finite number of random variables can be defined. 

The set of possible values of the random variable X − Y consists of all values x − y, where 

x is a possible value of X and y is a possible value of Y. The product and ratio of two random 

variables are defined in an analogous way. 

C Suppose we are given the distribution of the two-dimensional random variable (X, Y). We 

shall find the distributions of the random variables obtained as a result of four arithmetic 

operations performed on X and Y. 

We shall find the distribution function of the sum 

  Z = X +  Y…..(4) 

of two random variables or, in other words, the 

function 

F(z)  =  P(X +  Y <  z). 
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Fig. 2.9.1 

  

If for a given value of z we draw on the plane (x, y) the line x + y = z (see 

Fig. 2.9. l), then F(z) will be the probability that the point with coordinates x, y lies below 

this line. 

If (X, Y) is a random variable of the discrete type and takes on values (xi, 𝑦𝑘) 

 F(z) = Σ𝑥𝑖+𝑣𝑘<𝑧𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑘)… . (5), 

where the summation is extended over all the values (xi, 𝑦𝑘) for which the inequality under 

the summation sign is satisfied. 

Let (X, Y) be a random variable of the continuous type and let f(x, y), 𝑓1(𝑥), 𝑓2(𝑦) denote 

respectively the densities of the random variables 

(X, Y), X and Y. Let us write equality (4) in the form 

 X =  X, Z =  X +  Y or X =  X, Y =  Z —  X,….(6) 

where the identity X =  X is added in order to reduce this problem to a special case of 

transformation (l) considered at the beginning of this section. We have 

J = |
1 0
−1 1

| = 1 

From (3) it follows that the density of (X, Z) is 

 f(x, z − x)….(7) 

The density ψ(z) of Z is obtained as a marginal density of the two-dimensional random 

variable (X, Z) by integrating (2.9.7) with respect x to from −∞ to + ∞, 

 ψ(z) = ∫ 𝑓(𝑥, 𝑧 − 𝑥)𝑑𝑥
+∞

−∞
….(8) 

Finally we obtain 

  F(z) = ∫ [∫ 𝑓(𝑥, 𝑧 − 𝑥)𝑑𝑥
+∞

−∞
]𝑑𝑧

𝑧

−∞
…..(9) 
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If the random variables X and Y are independent, according to (5), we have 

f(x, y) = 𝑓1(𝑥)𝑓2(𝑦)  

Hence 

   ψ(z) = ∫ 𝑓1(𝑥)𝑓2(𝑧 − 𝑥)𝑑𝑥
+∞

−∞
 …..(8’) 

and 

       F(z) = ∫ [∫ 𝑓1(𝑥)𝑓2(𝑧 − 𝑥)𝑑𝑥
+∞

−∞
]𝑑𝑧

𝑧

−∞
….(9’) 

Because of the symmetry of the sum, we can replace in formulas (8), (8'), (9), and (9'), x by 

z − y and z − x by y. 

Example 2. Consider the random variable X with the density 

 

f(x) =
1

√2𝜋
𝑒−

𝑥2

2 ….(10) 

Instead of the expression 𝑒−
𝑥2

2  we often write exp (−
𝑥2

2
).  Then  

1

√2𝜋
∫ 𝑒−

𝑥2

2

+∞

−∞

𝑑𝑥 = 1 

Expression (10) is the density of the Gauss distribution, which is also called the normal 

distribution. This distribution will be treated more extensively later. 

Let the random variable Y have the density 

f(y) =
1

√2𝜋
𝑒−

𝑦2

2  

Suppose that X and Y are independent. Thus the density of the joint random variable (X, Y) is 

  f(x, y) =
1

√2𝜋
𝑒−

𝑥2

2
. 1

√2𝜋
𝑒−

𝑦2

2 =
1

2𝜋
𝑒−

(𝑥2+𝑦2)

2  …..(11) 

  

Consider the random variable Z =  X +  Y. By (8') we have for the density of Z 

ψ(z) = ∫
1

√2𝜋

+∞

−∞
exp (−

𝑥2

2
)

1

√2𝜋
exp (−

(𝑧−𝑥)2

2
) dx  
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 =
1

2π
∫ exp (−

2𝑥2−2𝑧𝑥+𝑧2

2
)𝑑𝑥

+∞

−∞
 

since  

2x2 − 2𝑧𝑥 + 𝑧2 = (𝑥√2)
2
− 2(𝑥√2)

𝑧

√2
+ (

𝑧

√2
)
2

+
𝑧2

2
= (𝑥√2 −

𝑧

√2
)
2

+
𝑧2

2
  

we have 

−
1

2
(2x2 − 2𝑧𝑥 + 𝑧2) = −

1

2
(𝑥√2 −

𝑧

√2
)
2

−
𝑧2

4
, 

and hence 

 ψ(z) =
1

2𝜋
∫ exp[−

1

2
(𝑥√2 −

𝑧

√2
)
2

exp (−
𝑧2

4
)] 𝑑𝑥

+∞

−∞
 

 =
1

√2𝜋
exp (−

𝑧2

4
) 

1

√𝜋
∫ 𝑒𝑥𝑝 [−

1

2
(𝑥√2 −

𝑧

√2
)
2

] 𝑑𝑥
+∞

−∞
 

Introducing the substitution u = x√2 − 𝑧|√2 into the last integral we obtain 

 
1

√𝜋
∫ 𝑒𝑥𝑝 [−

1

2
(𝑥√2 −

𝑧

√2
)
2

] 𝑑𝑥
+∞

−∞

=
1

√2𝜋
∫ exp(−

𝑢2

2
) 𝑑𝑢 = 1

+∞

−∞

 

and finally 

ψ(z) =
1

√2𝜋
exp(−

𝑧2

4
) 

Thus the distribution function F(z) is given by the formula 

𝐹(𝑧) =
1

√2𝜋
∫ 𝑒−

𝑧2

4

𝑧

−∞

𝑑𝑧 

We leave it to the reader as an exercise to derive the formulas for the distribution function 

and the density of the difference of two random variables. 

Let us now consider the product of two random variables X and Y with the two-dimensional 

density f(x, y) and the marginal densities f1(𝑥) and f2(𝑦) respectively. Let 

 Z = XY…..(12) 

This equality may be written as a system of equalities 

X = X,     Y =
Z

X
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We have 

J = |
0 1
1

𝑥
−
𝑧

𝑥2
| 

and hence |J| = 1|𝑥|. It follows from (3) that the two-dimensional density of the random 

variable (Z, X) has the form 

 f (x,
z

x
)
1

|𝑥|
 ….(13) 

The density ψ(z) of Z can be obtained by integrating expression (2.9.13) from−∞ to + ∞. 

We have 

 ψ(z) = ∫ f (x,
z

x
)
1

|𝑥|
𝑑𝑥

+∞

−∞
….(14) 

The distribution function of Z has the form 

F(z) = ∫ [∫ f (x,
z

x
)
1

|𝑥|

+∞

−∞
] 𝑑𝑧

𝑧

−∞
…..(15) 

If the random variables X and Y are independent, equalities (14) and (15) can be written as 

 ψ(z) = ∫
1

|𝑥|
𝑓1(𝑥)𝑓2 (

𝑧

𝑥
) 𝑑𝑥

+∞

−∞
….(14’) 

and 

 F(z) = ∫ [∫
1

|𝑥|
𝑓1(𝑥)𝑓2 (

𝑧

𝑥
) 𝑑𝑥

+∞

−∞
] 𝑑𝑧

𝑧

−∞
….(15’) 

we can replace in (14), (14'), (5), and (15'), x by z/y, z/x by y, and |x| by |y| 

For the ratio of two random variables, 

Z =
X

Y
, 

we obtain the following formulas: 

ψ(z) = ∫ 𝑓(𝑦𝑧, 𝑦)|𝑦|𝑑𝑦
+∞

−∞
…..(16) 

and  

 

F(z) = ∫ [∫ f(yz, y)|𝑦|𝑑𝑦
+∞

−∞
]𝑑𝑧

𝑧

−∞
….(17) 
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If the random variables X and Y are independent, 

   

ψ(z) = ∫ 𝑓1(𝑦𝑧) 𝑓2(𝑦)|𝑦|𝑑𝑦
+∞

−∞

 

F(z) = ∫ [∫ f1(𝑦𝑧)𝑓2(𝑦) |𝑦|𝑑𝑦
+∞

−∞
]𝑑𝑧

𝑧

−∞
. 
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UNIT II 

PARAMETERS OF THE DISTRIBUTION OF A RANDOM 

VARIABLE 

 

2.1. Expected values 

With every distribution of a random variable there are associated certain 

numbers called the parameters of the distribution, which play an important role 

in mathematical statistics. The parameters of a distribution are the moments and 

functions of them and also the order parameters.   

Let 𝑋 be a random variable. Consider a single-valued function 𝑔(𝑋) of 𝑋. 

 

Definition. 

 Let 𝑋 be a random variable of a discrete type with jump points 𝑥𝑘  and 

jumps 𝑝𝑘. The series 

𝐸[𝑔(𝑋)] =∑𝑝𝑘𝑔(𝑥𝑘)  …… (1)

𝑘

 

is called the expected value of the random variable 𝑔(𝑋) if the following 

inequality is satisfied: 

∑𝑝𝑘|𝑔(𝑥𝑘)| < ∞     

𝑘

 …… (2) 

Definition. 

 Let 𝑋 be a random variable of the continuous type with density function 

𝑓(𝑥). Let 𝑔(𝑥) be the Riemann integral. The integral 
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𝐸[𝑔(𝑋)] = ∫ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥
∞

−∞

……(3) 

is called the expected value of the random variable 𝑔(𝑋) if the following 

inequality is satisfied: 

∫ |𝑔(𝑥)|𝑓(𝑥)𝑑𝑥
∞

−∞

< ∞……(4) 

Remark.  

1. When the R.H.S of (1) is exists but (2) is not satisfied then the expected 

value of the random variable 𝑔(𝑋) does not exists. 

2. Similarly, when the R.H.S of 3 is exists but (4) is not satisfied then the 

expected value of the random variable 𝑔(𝑋) does not exists. 

3. If 𝑌 = 𝑔(𝑋), the expected value 𝐸[𝑔(𝑥)] equals the expected value 𝐸(𝑌) 

computed directly from the distribution of the random variable 𝑌. 

Suppose 𝑋 is a random variable of a discrete type. Let 𝑋 have jump points 𝑥𝑘  and 

jumps 𝑝𝑘 and let 𝑌 have jump points 𝑦𝑗 and jumps 𝑞𝑗. 

Notice that 𝑞𝑗(𝑗 = 1,2,… . ) Equals the sum of the probabilities 𝑝𝑘 for those 𝑘 

for which the equality 𝑔(𝑥𝑘) = 𝑦𝑖  holds. 

Since by the assumption about the existence of expectation. 𝐸[𝑔(𝑋)], the 

series ∑ 𝑝𝑘𝑔(𝑥𝑘) 𝑅  is absolutely convergent. 

∴ 𝐸(𝑌) = ∑ 𝑞𝑗𝑦𝑗𝑗 = ∑ 𝑝𝑘𝑔(𝑥𝑘)𝐾 = 𝐸[𝑔(𝑋)]. 

 

Example 1. 

Suppose that the random variable 𝑋 can take on two values 𝑥1 = −1 with 

probability 𝑃1 = 0.1 and 𝑥2 = 1 with probability 𝑝2 = 0.9. find the 𝐸(𝑥) 

Solution. 
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 𝐸(𝑋) = ∑ 𝑝𝑘𝑥𝑘   𝐾  

   = ∑ 𝑝𝑘𝑥𝑘
2
𝐾=1  

   = 𝑝1𝑥1 + 𝑝2𝑥2 

   = (0.1)(−1) + (0.9)(1) 

   = −0.1 + 0.9 

   = 0.8 

Clearly, ∑ 𝑝𝑘|𝑔(𝑥𝑘)| < ∞𝑛
𝑘=1  [𝑠𝑖𝑛𝑐𝑒 ∑ 𝑝𝑘|𝑔(𝑥𝑘)| = 𝑃1|𝑥1| + 𝑃2

𝑛
𝑘=1 |𝑥2| =

0.1 × 1 + 0 = 1 < ∞]. 

 

Example 2. 

Find the expectation value of Poisson Distribution (or) Let the random 

variable 𝑋 takes on the value 𝐾 = 0,1,2,…… and Let 𝑃(𝑋 = 𝑘) =
𝜆𝑘

𝑘!
𝑒−𝜆 where 

𝜆 > 0 is a positive constant. Compute expected value of 𝑋. 

Solution. 

 𝐸(𝑋) = ∑ 𝑘 ∞
𝑘=0

𝜆𝑘

𝑘!
𝑒−𝜆 

  = 0 + 𝜆𝑒−𝜆 ∑  ∞
𝑘=1

𝑘𝜆𝑘−1

𝑘(𝑘−1)!
 

  = 𝜆𝑒−𝜆 ∑∞𝑟=0
𝜆𝑟

𝑟!
    (𝑝𝑢𝑡 𝑟 = 𝑘 − 1) 

  = 𝜆𝑒−𝜆 (1 +
𝜆

1!
+
𝜆2

2!
+⋯… . . ) 

  = 𝜆𝑒−𝜆𝑒𝜆 

𝐸(𝑋) = 𝜆  

Clearly, ∑ 𝑝𝑘|𝐾| < ∞ ∞
𝐾=0 . 



 

 

73 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

 

Example 3. 

The random variable 𝑋 takes on the values 𝑟 = 0,1,2, ……𝑛 with 

𝑃(𝑋 = 𝑟) =
𝑛!

𝑟!(𝑛−𝑟)!
 𝑃𝑟(1 − 𝑃)𝑛−𝑟. Find 𝐸(𝑋). 

Solution. 

 𝐸(𝑋) = ∑ 𝑥𝑘𝑝𝑘𝐾  

 𝐸(𝑋) = ∑ 𝑟𝑝𝑟
𝑛
𝑟=0  

   = ∑ 𝑟
𝑛!

𝑟!(𝑛−𝑟)!
𝑛
𝑟=0 𝑝𝑟(1 − 𝑝)𝑛−𝑟 

   = 0 + ∑ 𝑟
𝑛(𝑛−1)!

𝑟(𝑟−1)!(𝑛−𝑟)!
𝑛
𝑟=1 𝑝𝑝𝑟−1(1 − 𝑝)𝑛−𝑟 

   = 𝑛𝑝∑
(𝑛−1)!

(𝑟−1)!(𝑛−𝑟)!
𝑛
𝑟=1 𝑝𝑟−1(1 − 𝑝)𝑛−𝑟 

   = 𝑛𝑝∑
(𝑛−1)!

𝑘!(𝑛−(𝑘+1))!
𝑛−1
𝑘=0 𝑃𝑘(1 − 𝑝)𝑛−(𝑘+1) 

   = 𝑛𝑝 [1 − 𝑝 + 𝑝]𝑛−1 = 𝑛𝑝[1]𝑛−1 = 𝑛𝑝 

Clearly ∑ 𝑝𝑘|𝑟| < ∞𝑛
𝑟=0 . 

 

Example 4. 

sA random variable 𝑋 is of the continuous type with density function 

𝑓(𝑥) =
1

√2𝜋
 𝑒−

𝑥2

2 . Find 𝐸(𝑋). 

Solution. 

 𝐸(𝑋) = ∫ 𝑥 
1

√2𝜋
 𝑒−

𝑥2

2 𝑑𝑥
∞

−∞
 

  =
1

√2𝜋
∫ 𝑥  𝑒−

𝑥2

2 𝑑𝑥
∞

−∞
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  =
−1

√2𝜋
∫ 𝑒−

𝑥2

2  (−𝑥𝑑𝑥)
∞

−∞
 

  =
−1

√2𝜋
∫  𝑒−

𝑥2

2 𝑑(
−𝑥2

2

∞

−∞
)  

  =
−1

√2𝜋
 (𝑒−

𝑥2

2 )
−∞

∞

=
−1

√2𝜋
 (𝑒−∞ − 𝑒−∞) 

𝐸(𝑋) = 0. 

 

Example 5. 

Let the random variable 𝑋 take on the values 𝑥𝑘 =
(−1)𝑘2𝑘

𝑘
, (𝑘 =

1,2,3… . . ), 𝑝𝑘 =
1

2𝑘
. Find 𝐸(𝑋) 

Solution. 

 𝐸(𝑋) = ∑ 𝑝𝑘𝑥𝑘𝑘  

  = ∑
1

2𝐾

(−1)𝐾2𝐾

𝐾
∞
𝑘=1 = ∑

(−1)𝐾

𝐾
∞
𝑘=1  

  =
(−1)1

1
+
(−1)2

2
+
(−1)3

3
+⋯…. 

 𝐸(𝑋) = − log 2 

But ∑ 𝑝𝑘|(𝑥𝑘)| < ∑
1

2𝐾
 |
(−1)𝐾2𝐾

𝐾
|∞

𝑘=1
∞
𝑘=1  

    = ∑
1

𝐾
∞
𝑘=1  

    = ∞ 

 ∴ 𝐸(𝑋) does not exists. 

 

Example 6. 

Consider the random variable 𝑌 defined by 𝑌 = |𝑋| where 𝑋 has 

distribution is given in above example compute 𝐸(𝑌). 
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Solution. 

Given 𝑌 = |𝑋| 

 𝐸(𝑌) = ∑ 𝑃𝑘𝐾 𝑌 

  = ∑ 𝑃𝑘𝐾 |𝑋| = ∑
1

2𝐾
|
(−1)𝐾2𝐾

𝐾
|𝐾  

  = ∑
1

𝐾
= ∞𝐾  

∴ 𝐸(𝑌) does not exist. 

 

2.2. Moments 

 

Definition. 

 The expected value of the function 𝑔(𝑋) = 𝑋𝐾  

i.e., 𝑚𝐾 = 𝐸(𝑋𝐾)  

is called the moment of order k of the random variable 𝑋. 

Definition. 

 If the random variable 𝑋 is of the discrete type with jump points 𝑥𝑙  and 

jumps 𝑝𝑙. 

 The moment of order 𝑘 is 𝑚𝐾 = 𝐸(𝑋𝐾) = ∑ 𝑥𝑙
𝐾𝑃𝑙𝑙  

Definition. 

 If the random variable 𝑋 is of the continuous type with density function 

𝑓(𝑥), the moment of order 𝑘 is given by 

𝑚𝑘 = 𝐸(𝑋
𝑘) = ∫ 𝑥𝑘𝑓(𝑥)𝑑𝑥

∞

−∞
. 
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Note. 

1. The moment 𝑚𝐾 to exists, it is necessary that ∑ 𝑥𝑙
𝑘𝑃𝑙𝑙  (or) ∫ 𝑥𝑘𝑓(𝑥)𝑑𝑥

∞

−∞
 

be absolutely convergent.  

2. If the moment of order 𝑘 exists all the moment of order smaller than 𝑘 also 

exists. 

3. If the moment of order 𝑘 of random variable 𝑋 exists then 

lim
𝑎→∞

𝑎𝑘𝑃(|𝑋| > 𝑎) = 0  𝑤ℎ𝑒𝑟𝑒 𝑎 > 0 

Proof. 

If 𝑋 is a random variable of continuous type with density  𝑓(𝑥) , 

 lim
𝑎→∞

𝑎𝑘𝑃(|𝑋| > 𝑎) ≤ 𝑙𝑖𝑚
𝑎→∞

∫ |𝑥|𝑘𝑓(𝑥)𝑑𝑥 = 0
|𝑥|>𝑎

 

i.e., 𝑃(|𝑋| > 𝑎) = 0 (
1

𝑎𝑘𝑠
). 

 

Theorem 2.1. 

Let 𝑔1(𝑋) and 𝑔2(𝑋) be  two single-valued functions of a random variable 

𝑋 and Let the expected values 𝐸[𝑔1(𝑋)] and 𝐸[𝑔2(𝑋)] exists. Show that 

𝐸[(𝑋) + 𝑔2(𝑋)] = 𝐸[𝑔1(𝑋)] + 𝐸[𝑔2(𝑋)] 

Proof. 

Let 𝑋 be the continuous type. 

Since 𝐸[𝑔1(𝑋)] and 𝐸[𝑔2(𝑋)] exists, 

 ⇒ ∫ |𝑔1(𝑋)| 𝑓(𝑥)𝑑𝑥
∞

−∞
< ∞ and ∫ |𝑔2(𝑋)|

∞

−∞
𝑓(𝑥)𝑑𝑥 < ∞ 

 ⇒ ∫ |𝑔1(𝑥)|
∞

−∞
𝑓(𝑥)𝑑𝑥 + ∫ |𝑔2(𝑥)|

∞

−∞
𝑓(𝑥)𝑑𝑥 < ∞ 
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 ⇒ ∫ [|𝑔1(𝑥)| + |𝑔2(𝑥)|]
∞

−∞
𝑓(𝑥)𝑑𝑥 < ∞    …… (1) 

We know that |𝑔1(𝑥) + 𝑔2(𝑥)| ≤ |𝑔1(𝑥)| + |𝑔2(𝑥)|, 

∫ |𝑔1(𝑥) + 𝑔2(𝑥)|
∞

−∞

𝑓(𝑥)𝑑𝑥 ≤ ∫ [|𝑔1(𝑥) + 𝑔2(𝑥)|]
∞

−∞

𝑓(𝑥)𝑑𝑥 < ∞ 

∴ ∫ |𝑔1(𝑥) + 𝑔2(𝑥)|
∞

−∞
𝑓(𝑥)𝑑𝑥 < ∞  

∴ ∫ |𝑔1(𝑥) + 𝑔2(𝑥)|
∞

−∞
𝑓(𝑥)𝑑𝑥 < ∞  

∴ 𝐸[𝑔1(𝑋) + 𝑔2(𝑋)] is exists. 

Consider 𝐸[𝑔1(𝑋) + 𝑔2(𝑋)] = ∫ (𝑔1(𝑥) + 𝑔2(𝑥))
∞

−∞
𝑓(𝑥)𝑑𝑥 

       = ∫ 𝑔1(𝑥)
∞

−∞
𝑓(𝑥)𝑑𝑥 + ∫ 𝑔2(𝑥)

∞

−∞
𝑓(𝑥)𝑑𝑥 

   = 𝐸(𝑔1(𝑋)) + 𝐸(𝑔2(𝑋)) 

Note.  

 Suppose 𝑔1(𝑋), 𝑔2(𝑋), ……𝑔𝑛(𝑋) are single valued functions of random 

variable 𝑋 and 𝐸[𝑔1(𝑋)], 𝐸[𝑔2(𝑋)],…… . . 𝐸[𝑔𝑛(𝑋)] are exists. Then  

𝐸[𝑔1(𝑋) + 𝑔2(𝑋) + ⋯𝑔𝑛(𝑋)] = 𝐸[𝑔1(𝑋)] + ⋯+ 𝐸[𝑔𝑛(𝑋)] 

 

Theorem 2.2. 

 Show that 𝐸[(𝑎𝑋)𝑘] = 𝑎𝑠𝑘𝐸[𝑋𝑘] where 𝑎 is constant. 

Proof. 

Let 𝑋 be the random variable of continuous type. 

Suppose, 𝐸[𝑋𝑘] is exists. 

Consider, 𝐸[(𝑎𝑋)𝑘] = ∫ (𝑎𝑋)𝑘
∞

−∞
𝑓(𝑥)𝑑𝑥 
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   = ∫ 𝑎𝑘𝑋𝑘
∞

−∞
𝑓(𝑥)𝑑𝑥 

                                   = 𝑎𝑘 ∫ 𝑋𝑘
∞

−∞
𝑓(𝑥)𝑑𝑥  

                                  = 𝑎𝑘𝐸(𝑋𝑘)  

∴ 𝐸((𝑎𝑋)𝑘) = 𝑎𝑘𝐸(𝑋𝑘)  

To prove: ∫ (𝑎𝑋)𝑘
∞

−∞
𝑓(𝑥)𝑑𝑥 < ∞  

∫ (𝑎𝑋)𝑘
∞

−∞
𝑓(𝑥)𝑑𝑥 = 𝑎𝑘 ∫ 𝑋𝑘

∞

−∞
𝑓(𝑥)𝑑𝑥 < ∞    

∴ 𝐸[(𝑎𝑋)𝑘] is exists. 

 

Theorem 2.3. 

Prove that 𝐸[𝑎𝑋 + 𝑏] = 𝑎𝐸(𝑋) + 𝑏 where 𝑎, 𝑏 are constant and 𝐸(𝑏) = 𝑏 

Proof. 

Consider 𝐸[𝑎𝑋 + 𝑏] = 𝐸[𝑎𝑋] + 𝐸[𝑏]     

     = 𝑎𝐸[𝑋] + 𝑏       

 ∴ 𝐸[𝑎𝑋 + 𝑏] = 𝑎𝐸[𝑋] + 𝑏. 

 

Example 1. 

The random variable 𝑋 can take on two values 2 and 4 where 𝑃(𝑋 = 2) =

0.2 and 𝑃(𝑋 = 4) = 0.8. Find 𝐸[𝑋2] 

Solution 

 𝑚𝐾 = 𝐸[𝑋
𝐾] = ∑ 𝑥𝑙

𝐾𝑃𝑙𝑙  

 𝐸[𝑋2] = ∑ 𝑥𝑙
2𝑃𝑙𝑙   



 

 

79 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

  = (2)2𝑃(𝑋 = 2) + 42𝑃(𝑋 = 2) 

  = 4(0.2) + 16(0.8) 

  = 0.8 + 12.8 = 13.6 

 𝑚2 = 13.6 

 

Example 2. 

The random variable 𝑋 has the normal distribution with density 𝑓(𝑥) =

1

√2𝜋
 𝑒−

𝑥2

2 . Find 𝐸(𝑋2). 

Solution.  

 𝑚𝐾 = 𝐸(𝑋
𝐾) = ∫ 𝑥𝐾

∞

−∞
𝑓(𝑥)𝑑𝑥 

 𝑚2 = 𝐸(𝑋2) = ∫ 𝑥2
1

√2𝜋
 𝑒−

𝑥2

2
∞

−∞
𝑑𝑥 

  =
1

√2𝜋
∫ 𝑥2 𝑒−

𝑥2

2
∞

−∞
𝑑𝑥 

 𝑢 = −𝑥, 𝑑𝑣 = −𝑥𝑒−
𝑥2

2 𝑑𝑥 

 𝑑𝑢 = −𝑑𝑥, 𝑣 = 𝑒−
𝑥2

2  

  =
1

√2𝜋
[(−𝑒−

𝑥2

2 𝑥)
−∞

∞

+ ∫ 𝑒−
𝑥2

2
∞

−∞
𝑑𝑥] 

  =
1

√2𝜋
[0 + ∫ 𝑒−

𝑥2

2
∞

−∞
𝑑𝑥]  

  =
1

√2𝜋
∫ 𝑒−

𝑥2

2
∞

−∞
𝑑𝑥 

  = 1 
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 𝑚2 = 𝐸(𝑋2) = 1 

 

Definition. 

 𝐸[(𝑋 − 𝑐)𝑘] where 𝑐is an arbitrary constant is called the moment of order 

𝒌 with respect to the point 𝑐. 

 

Definition. 

 Moments with respect to the expected value, that is, with respect to the 

point 𝑐 = 𝑚1 = 𝐸(𝑋) are called central moments.  

We denoted it by   𝜇𝐾 = 𝐸 [(𝑋 − 𝐸(𝑋))
𝐾
]. 

Moment with respect to the point 𝑐 = 0 are called ordinary moments. 

Moment about mean 

𝜇𝐾 = 𝐸((𝑋 − 𝐸(𝑋)𝐾)  

𝜇1 = 𝐸(𝑋 − 𝐸(𝑋))  

 = 𝐸(𝑋 −𝑚1) 

 = 𝐸(𝑋) − 𝑚1 = 𝑚1 −𝑚1 

𝜇1 = 0  

𝜇2 = 𝐸 ((𝑋 − 𝐸(𝑋))
2
)  

 = 𝐸((𝑋 − 𝑚1)
2) 

 = 𝐸(𝑋2 −𝑚1
2 − 2𝑚1𝑋) 

 = 𝐸(𝑋2) + 𝑚1
2 − 2𝑚1𝐸(𝑋) 
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 = 𝑚2 +𝑚1
2 − 2𝑚1

2 

𝜇2 = 𝑚2 −𝑚1
2  

𝜇3 = 𝐸 ((𝑋 − 𝐸(𝑋))
3
)  

 = 𝐸((𝑋 − 𝑚1)
3) 

 = 𝐸[𝑋3 −𝑚1
3 − 3𝑋2𝑚1 + 3𝑋𝑚1

2] 

 = 𝐸(𝑋3) − 𝑚1
3 − 3𝐸(𝑋2)𝑚1 + 3𝐸(𝑋)𝑚1

2 

 = 𝑚3 −𝑚1
3 − 3𝑚2𝑚1 + 3𝑚1

3 = 𝑚3 + 2𝑚1
3 − 2𝑚1𝑚2 

Note 

When 𝑘 = 2, 

The moment 𝐸[(𝑋 − 𝑐)2] is called the mean quadratic deviation of the random 

variable 𝑋 from the point 𝐶. 

 

Definition. 

 The central moment of the second order 𝜇2 = 𝑚2 −𝑚1
2 is called the 

variance.  

It is denoted by 𝐷2(𝑋)  𝑜𝑟 𝜎2. 

 

Definition. 

 Square root of the variation is called the standard deviation  

𝑖. 𝑒. , 𝑆. 𝐷 = √𝜎2 = 𝜎 
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Example 5. 

 Compute mean and variation of Binomial distribution. The random 

variable 𝑋 takes on the values 𝑟 = 0,1,2,… . . , 𝑛 with 𝑃(𝑋 = 𝑟) = (
𝑛
𝑟
)𝑃𝑟𝑞𝑛−𝑟 

Solution. 

Given 𝑃(𝑋 = 𝑟) = (
𝑛
𝑟
)𝑃𝑟(1 − 𝑝)𝑛−𝑟  

 𝐸(𝑋) = ∑ 𝑥𝑟𝑝𝑟𝑟  

 𝐸(𝑋) = ∑ 𝑟𝑛
𝑟=0 (

𝑛
𝑟
)𝑃𝑟(1 − 𝑝)𝑛−𝑟 

  = ∑ 𝑟𝑛
𝑟=0 (

𝑛
𝑟
)𝑃𝑟(1 − 𝑝)𝑛−𝑟 

  = ∑ 𝑟𝑛
𝑟=0

𝑛!

𝑟!(𝑛−𝑟)!
𝑃𝑟(1 − 𝑝)𝑛−𝑟 

  = ∑ 𝑟𝑛
𝑟=0

𝑛(𝑛−1)!

𝑟(𝑟−1)!(𝑛−𝑟)! 
𝑃 𝑃𝑟(1 − 𝑝)𝑛−𝑟 

  = 𝑛𝑝∑
(𝑛−1)! 

(𝑟−1)!(𝑛−1−(𝑟−1))! 
𝑛
𝑟=0 𝑃𝑟−1(1 − 𝑝)(𝑛−1−(𝑟−1)) 

  = 𝑛𝑝∑ 𝑟𝑛−1
𝑘=0 (

𝑛 − 1
𝐾

)𝑃𝐾(1 − 𝑝)𝑛−1−𝐾 

  = 𝑛𝑃(𝑃 + (1𝑃))
𝑛−1

 

  = 𝑛𝑃(𝑃 + 1 − 𝑃)𝑛−1 

𝐸(𝑋) = 𝑛𝑃  

𝐸(𝑋2) = ∑ 𝑟2𝑛
𝑟=0 𝑃(𝑋 = 𝑟)  

 = ∑ 𝑟2𝑛
𝑟=0

𝑛!

𝑟!(𝑛−𝑟)! 
𝑝𝑟(1 − 𝑝)𝑛−𝑟 

 = ∑ {𝑟2 − 𝑟 + 𝑟}
𝑛!

𝑟!(𝑛−𝑟)! 
𝑛
𝑟=0 𝑝𝑟(1 − 𝑝)𝑛−𝑟 
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 = ∑ {𝑟𝑛
𝑟=0 (𝑟 − 1) + 𝑟}

𝑛!

𝑟!(𝑛−𝑟)! 
𝑝𝑟(1 − 𝑝)𝑛−𝑟 

 = ∑ (𝑟(𝑟 − 1) + 𝑟)
𝑛(𝑛−1)

𝑟(𝑟−1)
𝑛
𝑟=0

(𝑛−2)! 

(𝑟−2)!(𝑛−2−(𝑟−2)!
𝑝𝑟(1 − 𝑝)𝑛−𝑟 

 = ∑ 𝑟𝑛
𝑟=0 (𝑟 − 1)

𝑛(𝑛−1)

𝑟(𝑟−1)

(𝑛−2)! 

(𝑟−2)!((𝑛−2)−(𝑟−2))! 
𝑃𝑟𝑞𝑛−𝑟 +

∑ 𝑟𝑛
𝑟=0

𝑛(𝑛−1)

𝑟(𝑟−1)

(𝑛−2)! 

(𝑟−2)!((𝑛−2)−(𝑟−2))! 
𝑃𝑟𝑞𝑛−𝑟 

 = 𝑛(𝑛 − 1)∑𝑛𝑟=2 (
𝑛 − 2
𝑟 − 2

) 𝑝𝑟−2+2𝑞(𝑛−2)−(𝑟−2) +

∑ 𝑛 𝑛
𝑟=0

(𝑛−1)!

(𝑟−1)!(𝑛−1)!−(𝑟−1)!
 𝑝𝑟−1+1𝑞(𝑛−1)−(𝑟−1) 

 = 𝑛(𝑛 − 1)𝑝2∑𝑛𝑟=2 (
𝑛 − 2
𝑟 − 2

) 𝑝𝑟−2𝑞(𝑛−2)−(𝑟−2) +

𝑛𝑝∑𝑛𝑟=1 (
𝑛 − 1
𝑟 − 1

) 𝑝𝑟−1𝑞(𝑛−1)−(𝑟−1) 

 = 𝑛(𝑛 − 1)𝑝2(𝑝 + 𝑞)𝑛−2 + 𝑛𝑃 (𝑝 + 𝑞)𝑛−1 

 = 𝑛(𝑛 − 1)𝑝2(𝑝 + 1 − 𝑃)𝑛−2 + 𝑛𝑝 (𝑃 + 1 − 𝑃)𝑛−1 

𝐸(𝑋2) = 𝑛(𝑛 − 1)𝑝2 + 𝑛𝑝  

Variance 𝜎2 = 𝜇2 = 𝑚2 −𝑚1
2 

𝐷2(𝑋) = 𝑛(𝑛 − 1)𝑝2 + 𝑛𝑝 − (𝑛𝑝)2  

 = 𝑛2𝑝2 − 𝑛𝑝2 + 𝑛𝑝 − 𝑛2𝑝2 

 = 𝑛𝑝 − 𝑛𝑝2 

 = 𝑛𝑝(1 − 𝑝) = 𝑛𝑝𝑞 

 

Example 6. Find 𝜇4 and 𝑚4. 

Suppose 𝑛 = 2, 𝑝 =
1

2
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Then 𝐸(𝑋) = 𝑛𝑝 = 2 ×
1

2
= 1 

𝜎2 = 𝑛𝑝𝑞 = 2 ×
1

2
× (1 −

1

2
)  

 =
1

2
 

𝐸(𝑋) = 1, 𝜎2 =
1

2
 . 

 

Example 7.  

 Let 𝑛 = 3, 𝑝 =
1

3
 

 𝐸(𝑋) = 𝑛𝑝 = 3 ×
1

3
= 1 

 𝜎2 = 𝑛𝑝𝑞 = 3 ×
1

3
× (1 −

1

3
) 

  =
2

3
 

Property of the variance 

1. For every 𝑐 ≠ 𝑚1, 𝐷
2(𝑋) < 𝐸[(𝑋 − 𝑋)2 ]. 

Proof. 

𝐸[(𝑋 − 𝑐)2] = 𝐸[([𝑋 − 𝑚1] + [𝑚1 − 𝑐])
2]   

 = 𝐸[(𝑋 − 𝑚1)
2 + (𝑚1 − 𝑐)

2 + 2(𝑋 −𝑚1)(𝑚1 − 𝑐)] 

 = 𝐸[(𝑋 − 𝑚1)
2] + (𝑚1 − 𝑐)

2 + 2(𝑚1 − 𝑐)𝐸[(𝑋 − 𝑚1)] 

 = 𝐷2(𝑋) + (𝑚1 − 𝑐)
2 + 2(𝑚1 − 𝑐)(𝐸(𝑋) − 𝑚1) 

 = 𝐷2(𝑋) + (𝑚1 − 𝑐)
2 

∴ 𝐸[(𝑋 − 𝑐)2] = 𝐷2(𝑋) + (𝑚1 − 𝑐)
2  

𝐷2(𝑋) < 𝐸 [(𝑋 − 𝑐)2]  

2. Find the variance of the liner function of the random variable 𝑌 = 𝑋 + 𝐶 

where 𝑐 is constant. 
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Proof. 

 Let 𝑌 = 𝑋 + 𝐶 where 𝐶 is constant 

 𝐷2(𝑌) = 𝐸 [(𝑌 − 𝐸(𝑌))
2
] 

  = 𝐸 [(𝑋 + 𝐶 − 𝐸(𝑋 + 𝑋))
2
] 

  = 𝐸[(𝑋 + 𝐶 − 𝐸(𝑋) − 𝐶)2] 

   = 𝐸 [(𝑋 − 𝐸(𝑋))
2
] = 𝐷2(𝑋) 

 ∴ 𝐷2(𝑌) = 𝐷2(𝑋) 

3. Find the variance of the random variable 𝑌 = 𝑎𝑋 + 𝑏 where 𝑎 and 𝑏 are 

constant. 

Proof. 

Let 𝑌 = 𝑎𝑋 + 𝑏 

𝐷2(𝑌) = 𝐸(𝑌2) − (𝐸(𝑌))
2
  

           = 𝐸((𝑎𝑋 + 𝑏)2) − (𝐸(𝑎𝑋 + 𝑏))
2
 

           = 𝐸(𝑎2𝑋2 + 𝑏2 + 2𝑎𝑏𝑋) − (𝑎𝐸(𝑋) + 𝑏)2 

 = 𝑎2𝐸(𝑋2) + 𝑏2 + 2𝑎𝑏𝐸(𝑋) − (𝑎2𝐸(𝑋))
2
+ 𝑏2 + 2𝑎𝑏𝐸(𝑋))  

 = 𝑎2𝐸(𝑋2) + 𝑏2 + 2𝑎𝑏𝐸(𝑋) − 𝑎2(𝐸(𝑋))
2
− 𝑏2 − 2𝑎𝑏𝐸(𝑋)  

 = 𝑎2 [𝐸(𝑋2) − (𝐸(𝑋))
2
] 

 = 𝑎2𝐷2(𝑋) 

∴ 𝐷2(𝑌) = 𝑎2𝐷2(𝑋) . 

Definition 

 A random variable 𝑋 for which 𝐸(𝑋) = 0, 𝐷2(𝑋) = 1 is called the 

standardized random variable. 
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Problem 2.1. 

 If 𝑋 is the random variable with 𝐸(𝑋) = 𝑚1 &  standard deviation 𝜎, the 

random variable 𝑌 defined as 𝑌 =
𝑋−𝑚1

𝜎
. Prove that 𝑌 is a standardized random 

variable. 

Solution. 

Let 𝑌 =
𝑋−𝑚1

𝜎
 

 𝐸(𝑌) = 𝐸 (
𝑋−𝑚1

𝜎
) 

  =
1

𝜎
 𝐸(𝑋 − 𝑚1) =

1

𝜎
[𝐸(𝑋) − 𝑚1] = 0 

 𝐷2(𝑌) = 𝜎2 = 𝑚2 −𝑚1
2 

  = 𝐸[𝑌2] − [𝐸(𝑌)]2 = 𝐸 [(
𝑋−𝑚1

𝜎
)
2
] = 0 

  =
𝐸[𝑋2+𝑚1

2−2𝑋𝑚1]

𝜎2
 

  =
1

𝜎2
[𝐸(𝑋2) + 𝑚1

2 − 2𝑚1𝐸(𝑋)] 

  =
1

𝜎2
[𝑚2 +𝑚1

2 − 2𝑚1
2] =

1

𝜎2
[𝑚2 −𝑚1

2] 

  =
1

𝜎2
× 𝜎2 

 𝐷2(𝑌) = 1 

∴ 𝐸(𝑋) = 0 and 𝐷2(𝑌) = 1 

⇒ 𝑌 is the standardized random variable. 

Remark.  

 The standard deviation, the mean deviation can serve as a measure of 

dispersssion. 
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i) If the variable 𝑋 is of the discrete type with jumps points 𝑥𝑖  

∑ 𝑃𝑖|𝑥𝑖 −𝑚1|−∞<𝑥1<∞   

ii) If 𝑋 is the random variable of the continuous type ∫ |𝑥 − 𝑚1|
∞

−∞
𝑓(𝑥)𝑑𝑥. 

 

Definition. 

 The ratio of the standard deviation to the expected value is called the 

coefficient of variation. This ratio is denoted by 𝑣 =
𝜎

𝑚1
 

 If 𝐸(𝑋) = 𝑚1 = 1 then 𝑣 = 𝜎 

 i.e., coefficient of variation = standard deviation  

 i.e., the coefficient of variation is a measure of dispersion if the expected 

value is the unit of measurement. 

 

Example.  

Find the co-efficient of variation in Binomial distribution. 

Solution 

𝐸(𝑋) = 𝑛𝑝 and 𝜎 = √𝑛𝑝𝑞 

 𝑣 =
𝜎

𝑚1
= √𝑛𝑝𝑞

𝑛𝑝
= √

𝑞

𝑛𝑝
 

 

Definition. 

 The random variable 𝑋 has a symmetric distribution if there exists a point 

a such that for every 𝑥 the distribution 𝐹(𝑥) of 𝑋 satisfy the equation. 

𝐹(𝑎 − 𝑥) = 1 − 𝐹(𝑎 + 𝑥) − 𝑃(𝑋 = 𝑎 + 𝑥) 
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The point 𝑎 is called the center of symmetry. 

In particular, If 𝑎 = 0 ∀𝑥, 𝐹(𝑥) = 1 − 𝐹(𝑥) − 𝑃(𝑋 = 𝑥). 

Definition. 

 If a random variable with symmetric distribution is of the continuous type, 

its density function 𝑓(𝑥) satisfies the equation (excluding the discontinuity 

points). 

Definition. 

 If 𝑋 is of discrete type, its jump points and their probabilities are placed 

symmetrically with respect to the center of symmetry. 

Note 

1. If the random variable has a symmetric distribution and its expected value 

exists, this expected value equals the center of symmetry. 

2. For a symmetric distribution the central moments of r orders (if they exists) 

are equal to zero. 

3. Since, in a symmetric distribution all the central limits of odd order equals 

zero, the value of every moments of odd order as a measure of asymmetric 

of the distribution 

For the measure of asymmetry we use the expression. 

𝛾 =
𝜇3
𝜎3

 

This is called the co-efficient of skewness. 

 

Theorem 2.3 

 Suppose that the moments 𝑚𝑘(𝑘 = 1,2…… ) of a random variable 𝑋 exists 

and the series ∑
𝑚𝑘

𝑘!
∞
𝑘=1  𝑟𝑘 is absolutely convergent for some 𝑟 > 0, then the set 

of moments {𝑚𝑘} uniquely determines the distribution function 𝐹(𝑥) of 𝑋. 
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Note 

1. If for some of constant 𝜇, |𝑚𝑘| ≤ 𝜇𝑘  (𝐾 = 1,2, … . . ) the distribution 

function 𝐹(𝑥) is uniquely convergent. 

If the set of all possible values of a random variable 𝑋 is bounded from 

both sides, the set {𝑚𝑘} determines 𝐹(𝑥) uniquely. 

 

Examples.  

1. Let the random variable 𝑋 takes on the values 𝑥𝑘 =
2𝑘

𝑘2
 (𝐾 = 1,2… . . ) with 

probability is 𝑝𝑘 =
1

2𝑘
. 

𝐸(𝑋) = ∑ 𝑥𝑘𝑝𝑘
∞
𝑘=1 = ∑

2𝑘

𝑘2
∞
𝑘=1

1

2𝑘
= ∑

1

𝑘2
∞
𝑘=1 < ∞  

𝐸(𝑋) exists. 

𝐸(𝑋2) =∑ 𝑥𝑘
2∞

𝑘=1 𝑃𝑘 = ∑
(2𝑘)

2

𝑘4
1

2𝑘
= ∑

2𝑘

𝑘4
∞
𝑘=1

∞
𝑘=1 = ∞  

2. Let a random variable 𝑌 take on zero with probability 
1

2
 and the values 𝑦𝑘 =

2𝑘+1

𝑘2
 with probabilities 𝑃𝑘

′ =
1

2𝑘+1
 

𝐸(𝑌) = ∑ 𝑦𝑘
∞
𝑘=1 𝑃𝑘

′   

   = ∑
2𝑘+1

𝑘2
∞
𝑘=1

1

2𝑘+1
= ∑

1

𝑘2
= 𝐸(𝑋)∞

𝑘=1   

 𝐸(𝑌2) = ∑ 𝑦𝑘
2∞

𝑘=1  𝑃𝑘
′ = ∑

(2𝑘+1)2

𝑘4
𝑠∞

𝑘=1 .
1

2𝑘+1
 

  = ∑
2𝑘+1

𝑘4
∞
𝑘=1 = ∞ 

∴ The random variable 𝑋 and 𝑌 have the same moments of the first order does 

not have moments of any order > 1. 
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2.3. The Chebyshev Inequality 

 

Theorem 2.4. 

 If a random variable 𝑌 can take on only non negative values and has 

expected value 𝐸(𝑌), then for an arbitrary positive number ks, 𝑃(𝑌 ≥ 𝑘) ≤
𝐸(𝑌)

𝑘
 

Proof. 

Suppose 𝑌 is of continuous type. 

 𝑃(𝑌 ≥ 𝐾) = 1 − 𝑃(𝑌 < 𝐾) 

   = ∫ 𝑓(𝑦)𝑑𝑥
∞

−∞
− ∫ 𝑓(𝑦)𝑑𝑦

𝐾

−∞
 

   = ∫ 𝑓(𝑦)𝑑𝑦
∞

𝐾
 

Consider 𝐸(𝑌) = ∫ 𝑦𝑓(𝑦)𝑑𝑦
∞

−∞
 

    = ∫ 𝑦𝑓(𝑦)𝑑𝑦
∞

0
 

    ≥ ∫ 𝑦 𝑓(𝑦)𝑑𝑦
∞

𝐾
 

    ≥ 𝐾 ∫ 𝑓(𝑦)𝑑𝑦
∞

𝐾
 

    = 𝐾𝑃(𝑌 ≥ 𝐾) 

 ∴ 𝐸(𝑌) ≥ 𝐾 𝑃(𝑌 ≥ 𝐾) 

 ⇒ 𝑃(𝑌 ≥ 𝐾) ≤
𝐸(𝑌)

𝐾
 

 

Corollary. 
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 Let the random variable 𝑋 have a distribution of probability about which 

we assume only that there is a finite variane 𝜎2 then for every 𝐾 > 0, 

𝑃(|𝑋 − 𝑚1| ≥ 𝐾𝜎 ≤
1

𝐾2
 

Proof. 

Suppose the random variable 𝑋 has the expected value 𝐸(𝑋) = 𝑚1 and a standard 

deviation 𝜎 

Consider the random variable 𝑌 = (𝑋 −𝑚1)
2 

Clearly 𝑌 ≥ 0 

 𝐸(𝑌) = 𝐸((𝑋 −𝑚1)
2) = 𝐸(𝑋2 +𝑚1

2 − 2𝑚1𝑋) 

  = 𝐸(𝑋2) + 𝑚1
2 − 2𝑚1𝐸(𝑋) 

  = 𝑚2 +𝑚1
2 − 2𝑚1

2 = 𝑚2 −𝑚1
2 

 𝐸(𝑌) = 𝑚2 −𝑚1
2 = 𝜎2 

 ∴ 𝐸(𝑌) is exists. 

By the above theorem, 

 𝑃(𝑌 ≥ 𝐾) ≤
𝐸(𝑌)

𝐾
 

 Put 𝐸(𝑌) = 𝜎2 

 And 𝐾 = 𝐾2𝜎2 is a constant. 

 𝑃((𝑋 −𝑚1)
2 ≥ 𝐾2𝜎2) ≤

𝜎2

𝐾2𝜎2
 

 𝑃((𝑋 −𝑚1)
2 ≥ 𝐾2𝜎2) ≤

1

𝐾2
 

 𝑃(|𝑋 − 𝑚1| ≥ 𝐾𝜎) ≤
1

𝐾2
   …… (1) 

Note.  
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 Equation (1) is valid for arbitrary random variables whose variance exists 

(second order moment exists)  

 Put 𝐾 = 3 in equation (1), 

 𝑃(|𝑋 − 𝑚1| ≥ 3𝜎) ≤
1

9
 

 If follows that in the class of random variables whose second order moment 

exists one can’t obtain the better inequality than the Chebyshev’s inequality. 

Example 1. 

The random variable 𝑋 has the probability function 

 𝑃(𝑋 = −𝐾) = 𝑃(𝑋 = 𝐾) =
1

2𝐾2
, 𝑃(𝑋 = 0) = 1 −

1

𝐾2
 

where 𝐾 is some positive constants. 

We have  𝐸(𝑋) = ∑ 𝑥𝐾𝑓(𝑥)𝐾  

  = 0 𝑃(𝑋 = 0) + 𝐾 𝑃(𝑋 = 𝐾) + (−𝐾)𝑃(𝑋 = −𝐾) 

  = 𝐾 (
1

2𝑘2
) − 𝐾 (

1

2𝐾2
) = 0 

 𝐸(𝑋2) = ∑𝑥𝐾
2 𝑃𝐾 

  = 𝐾2 (
1

2𝐾2
) + 𝐾2 (

1

2𝐾2
) 

  = 2𝐾2 (
1

2𝐾2
) = 1 

 𝜎 = 𝑚2 −𝑚1
2 = 1 − 0 = 1 

We know that = 𝑃(|𝑋 − 𝑚1| ≥ 𝑘𝜎) ≤
1

𝐾2
 

L.H.S 𝑚1 = 0, 𝜎 = 1 

𝑃(|𝑋 − 𝑚1| ≥ 𝐾𝜎) = 𝑃(|𝑋| − 𝐾)  
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= 𝑃(𝑋 = −𝐾) + 𝑃(𝑋 = 𝐾) =
1

2𝐾2
+

1

2𝐾2
=

2

2𝐾2
=
1

𝐾2
 

𝑃(𝑋 = −𝐾) = 𝑃(𝑋 = 𝐾) =
1

2𝐾2
, 𝑃(𝑋 = 0) = 1 −

1

𝐾2
. 

 

2.4. Absolute Moment  

 

Definition. 

 The expression 𝐸(|𝑋|𝐾) is called the Absolute Moment of order 𝒌. The 

absolute moment are denoted by 𝛽𝑘. 

If 𝑋 is a random variable of the discrete type with jump points 𝑥𝑖 , 

 𝛽𝑘 = 𝐸(|𝑋|𝑘 = ∑ |𝑥|𝑘𝑃𝑖𝑖  

If 𝑋 is a random variable of continuous type with density 𝑓(𝑥), 

 𝛽𝑘 = 𝐸(|𝑋|𝑘) = ∫ |𝑥|𝑘𝑓(𝑥)𝑑𝑥
∞

−∞
 

Remark.  

1. The absolute moment of an even order equals the moment of the same 

order. 

Theorem 2.5.(Lapunov inequality) 

 If for a random variable 𝑋 the absolutely moment of order 𝑛 exists, for 

arbitrary k (𝑘 = 1,2, …… , 𝑛 − 1) the following inequality is then true. 

𝛽𝑘

1

𝑘 ≤ 𝛽𝑘+1

1

𝑘+1    

Proof. 

Suppose that the random variable is of the continuous type is exists. 

Let 𝑢 and 𝑣 be to arbitrary real numbers. 



 

 

94 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

Consider the non-negative expression 

 ∫ [𝑢|𝑥|
𝑘−1

2 + 𝑣|𝑥|
𝑘+1

2 ]
2

𝑓(𝑥)𝑑𝑥
∞

−∞
= ∫ [𝑢2|𝑥|𝑘−1 + 𝑣2|𝑥|𝑘+1 +

∞

−∞

2𝑢𝑣|𝑥|2𝑓(𝑥)𝑑𝑥 

= ∫ 𝑢2|𝑥|𝑘−1𝑓(𝑥)𝑑𝑥
∞

−∞

+∫ 𝑢2|𝑥|𝑘+1𝑓(𝑥)𝑑𝑥
∞

−∞

+∫ 2𝑢𝑣|𝑥|𝑘𝑓(𝑥)𝑑𝑥
∞

−∞

 

= 𝑢2𝛽𝑘−1 + 𝑣
2𝛽𝑘+1 + 2𝑢𝑣𝛽𝑘 

    = 𝑢2𝛽𝑘−1 + 𝑣
2𝛽𝑘+1 + 2𝑢𝑣𝛽𝑘 ≥ 0 

 i.e, 𝑢2𝛽𝑘−1 + 2𝑢𝑣𝛽𝑘 + 𝑣
2𝛽𝑘+1 ≥ 0 

we know that, the condition for the expression 𝑎𝑥2 + 2ℎ𝑥𝑦 + 𝑏𝑦2 to be non-

negative ∀ values of 𝑥 and 𝑦 is that |
𝑎 ℎ
ℎ 𝑏

| ≥ 0. 

∴ |
𝛽𝑘−1 𝛽𝑘
𝛽𝑘 𝛽𝑘+1

| ≥ 0  

𝛽𝑘−1𝛽𝑘+1 − 𝛽𝑘
2 ≥ 0  

⇒ 𝛽𝑘
2 ≤ 𝛽𝑘−1𝛽𝑘+1……(1)  

Rising both the sides of equation (1) , to power k 

(𝛽𝐾
2)𝐾 ≤ (𝛽𝐾−1𝛽𝐾+1)

𝐾     

𝛽𝑘
2𝑘 ≤ 𝛽𝑘−1

𝑘 𝛽𝑘+1
𝑘 ……(2)  

Put 𝑘 = 1,2, … . 𝑛 − 1    𝑖𝑛 (2) 

𝛽1
2 ≤ 𝛽0𝛽2  

𝛽2
4 ≤ 𝛽1

2𝛽3
2  

𝛽3
6 ≤ 𝛽2

3𝛽4
3  

𝛽4
8 ≤ 𝛽3

4𝛽5
4  
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𝛽5
10 ≤ 𝛽4

5𝛽6
5  

. 

. 

𝛽𝑛−3
2(𝑛−3) ≤ 𝛽𝑛−4

𝑛−3𝛽𝑛−2
𝑛−3  

𝛽𝑛−2
2(𝑛−2) ≤ 𝛽𝑛−3

𝑛−2 𝛽𝑛−1
𝑛−2  

𝛽𝑛−1
2(𝑛−1) ≤ 𝛽𝑛−2

𝑛−1𝛽𝑛
𝑛−1   

Where 𝛽0 = ∫ |𝑥|0𝑓(𝑥)𝑑𝑥
∞

−∞
= ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞
= 1 

Multiplying the 𝑘 successive inequalities and 𝛽0 = 1, we get, (𝛽𝑛−1 ≤ 𝛽𝑛
𝑛−1) 

In general, 𝛽𝑘 ≤ 𝛽𝑘+1  ∀𝑘 = 1,2, … . , −1  → (3) 

Raising both side of (3) to power 
1

𝑘(𝑘+1)
  

(𝛽𝑘
𝑘+1)

1

𝑘(𝑘+1) ≤ (𝛽𝑘+1
𝑘 )

1

𝑘(𝑘+1)  

(𝛽𝑘)
1

𝑘 ≤ (𝛽𝑘)
1

𝑘+1  

𝛽𝑘

1

𝑘 ≤ 𝛽𝑘+1

1

𝑘+1   

 

2.5. Order Parameters 
 

Definition. 

 The value 𝑥 satisfying the inequalities 

 𝑃(𝑋 ≤ 𝑥) ≥
1

2
, 𝑃(𝑋 ≥ 𝑥) ≥

1

2
 …… (1)  
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is called the median and is denoted by 𝑥1
2

 one is equivalent to the double 

inequality. 

1

2
− 𝑃(𝑋 = 𝑥) ≤ 𝐹(𝑥) ≤

1

2
   → (2) 

If 𝑃(𝑋 = 𝑥) = 0 

In particular, 

If the random variable 𝑋 is of the continuous type the median is the number 𝑥 

satisfying the equivality 𝐹(𝑥) =
1

2
  → (3) 

 If many value of 𝑥 satisfying inequalities (1) or (2) then each of them is 

called the median. 

Example. 

1. Suppose that the random variable 𝑋 can take on the values 0 and 1, 

𝑃(𝑋 = 0) =
1

5
, 𝑃(𝑋 = 1) =

4

5
. Then find the median. 

Solution. 

 Let 𝑥 = 0 

 𝑃(𝑋 ≥ 0) = 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) =
1

5
+
4

5
= 1 >

1

2
 

 𝑃(𝑋 ≤ 0) = 𝑃(𝑋 = 0) =
1

5
≯

1

2
 

 ∴ 0  is not a median point. 

 Let 𝑥 = 1 

  𝑃(𝑋 ≥ 1) = 𝑃(𝑋 = 1) =
4

5
>

1

2
 

  𝑃(𝑋 ≤ 1) = 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) =
1

5
+
4

5
= 1 >

1

2
 

 ∴ 1 is a median point. 
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2. The random variable 𝑋 is of the continuous type with density defined as 

𝑓(𝑥) =  {

0  𝑓𝑜𝑟 𝑥 < 0

cos 𝑥   𝑓𝑜𝑟 0 ≤ 𝑥 ≤
𝜋

2

 0   𝑓𝑜𝑟 𝑥 >
𝜋

2

 

Solution. 

 We know that, if the random variable 𝑋 is of the continuous type, 

the median is the number 𝑥1
2

 satisfying the inequality 𝐹 (𝑥1
2

) =
1

2
 

i.e., ∫ 𝑓(𝑥)𝑑𝑥
𝑥1
2

−∞
=

1

2
 

∫ 𝑓(𝑥)𝑑𝑥
0

𝑥1
2

+ ∫ 𝑓(𝑥)𝑑𝑥
𝑥1
2

0
+ ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑥1
2

=
1

2
  

∫ cos 𝑥 𝑑𝑥
𝑥1
2

0
=

1

2
  

(sin 𝑥)0

𝑥1
2 =

1

2
  

sin 𝑥1
2

=
1

2
  

𝑥1
2

=
𝜋

6
  

∴
𝜋

6
 is a median point 

3. Suppose that the random variable 𝑋 can take on 3 values 𝑥1 = −1, 𝑥2 =

0, 𝑥3 = 1 with 𝑃(𝑋 = −1) = 𝑃(𝑋 = 0) =
1

4
 𝑃(𝑋 = 1) =

1

2
. Find the 

median. 

Solution.  

 Let 𝑥 = −1 

 𝑃(𝑋 ≥ −1) = 𝑃(𝑋 = −1) + 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) 

   =
1

4
+
1

4
+
1

2
= 1 >

1

2
 

 𝑃(𝑋 ≤ −1) = 𝑃(𝑋 = −1) =
1

4
≯

1

2
 

 ∴ −1 is not a median point. 

 𝑃(𝑋 ≥ 0) = 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) 
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   =
1

4
+
1

2
=

3

4
>

1

2
 

𝑃(𝑋 ≤ 0) = 𝑃(𝑋 = −1) + 𝑃(𝑋 = 0) =
1

4
+
1

4
=
1

2
≥
1

2
 

∴ 0 is a median point. 

𝑃(𝑋 ≥ 1) = 𝑃(𝑋 = 1) =
1

2
≥

1

2
  

𝑃(𝑋 ≤ 1) = 𝑃(𝑋 = −1) + 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1)  

= 1 >
1

2
 

∴ 1 is a median point. 

Here each value 𝑥 from the interval (0,1) is the median. 

 

Definition. 

 The median is a special case of the class of parameters called quantiles. 

Definition. 

 The value 𝑥 satisfy the inequalities 

 𝑃(𝑋 ≤ 𝑥) ≥ 𝑝, 𝑃(𝑋 ≥ 𝑥) ≥ 1 − 𝑝 (0 < 𝑝 < 1)    …… (1)  

is called the quantile of order 𝒑 and is denoted by 𝑥𝑝. 

(1)is equivalent to the double inequality  

 𝑝 − 𝑃(𝑋 = 𝑥) ≤ 𝐹(𝑥) ≤ 𝑝  …… (2) 

If 𝑃(𝑋 = 𝑥𝑝) = 0. In particular, if the random variable 𝑋 is of the continuous 

type. 

(2) ⇒ 𝑝 ≤ 𝐹(𝑥) ≤ 𝑝  

∴ 𝐹(𝑥) = 𝑝  

The quantile of order 𝑝 is the number satisfy the equation 𝐹(𝑥) = 𝑝 → (3) 
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If many numbers 𝑥 satisfy one or two each of them is then called the quantile of 

order 𝑝. 

 

Definition 

 Quantiles and functions of them are called order parameters. 

Example.  

1. Suppose that the random variable 𝑋 has the normal distribution with 

density 𝑓(𝑥) =
1

√2𝜋
 𝑒−

𝑥2

2 . Find the point 𝑥 for which 𝐹(𝑥) = 0.1. 

Solution. 

 𝑥 1

10

≅ 1.28 

Remark  

1. Some simple functions of the quantiles may also serve as measure of 

dispersion. 

2. The semi-inter quartile range defined as 
1

2
(𝑥3

2

− 𝑥1
4

) 

3. If the set of all possible values of a random variable is bounded from both 

sides, there exists finite upper and lower bounds of the values taken by this 

random variables. 

4. If 𝑎 and 𝑏 are the lower and upper bounds of the values taken on by the 

random variable the range is defined by 𝑑 = 𝑏 − 𝑎 

In example -2, the range equals 
𝜋

2
,  in example – 3 it equals 2. 

 

2.6. Moments of Random Vector 

 Let ordered pair of (𝑋, 𝑌) be a two-dimensional random variable. Consider 

the single valued functions 𝑔(𝑋, 𝑌) of (𝑋, 𝑌). 
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Definition. 

 Let order pair of (𝑋, 𝑌) be a 2-dimensional random variable of the discrete 

type with jump points (𝑥𝑖 , 𝑦𝐾) and jumps 𝑃𝑖𝐾. 

The series 

𝐸[𝑔(𝑋, 𝑌)] =∑𝑃𝑖𝐾𝑔(𝑥𝑖
𝑖,𝐾

, 𝑦𝐾) 

is called the expected value of if the following inequality is satisfied: 

∑ 𝑃𝑖𝑘|𝑔(𝑥𝑖𝑖,𝑘 , 𝑦𝑘)| < ∞ . 

Definition. 

 Let (𝑋, 𝑌) be a random variable of the continuous type with density 

𝑓(𝑥, 𝑦). Let 𝑔(𝑥, 𝑦) be Riemann Integrable. 

𝐸[𝑔(𝑋, 𝑌)] = ∫ ∫ 𝑔(𝑥, 𝑦)𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
∞

−∞

< ∞
∞

−∞

 

Exercise  

1. Express the central moment 𝜇4 as the function of the ordinary moments 

𝑚1, 𝑚2, 𝑚3,𝑚4. 

2. Express the ordinary moment 𝑚4 as the function of the central moments 

𝜇1, 𝜇2, 𝜇3, 𝜇4 

3. Show that if 𝑋1 and 𝑋2 are independent and have same distribution, 𝑌 =

𝑋1 − 𝑋2 has a symmetric distribution. 

 

Definition. 

 The expected value of the function 𝑔(𝑋, 𝑌) = 𝑋𝑙𝑌𝑛  

i.e., 𝑚𝑙𝑛 = 𝐸(𝑋
𝑙 . 𝑌𝑛) 
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where 𝑙 𝑎𝑛𝑑 𝑛 are non-negative integer, is called the moment of order 𝒍 + 𝒏 of 

the random variable (𝑋, 𝑌). 

Thus, if (𝑋, 𝑌) is random variable of the discrete type with jump points (𝑥𝑖 , 𝑦𝑘) 

and jumps 𝑃𝑖𝑘, 

𝑚𝑙𝑛 = ∑ 𝑃𝑖𝑘𝑖,𝑘 𝑥𝑖
𝑙𝑦𝑘
𝑛  

If (𝑋, 𝑌) is a random variable of the continuous type with density function 

𝑓(𝑥, 𝑦), 

 𝑚𝑙𝑛 = ∫ ∫ 𝑥𝑙𝑦𝑛𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞
 

Remark  

1. Two moments of the first order exist 

𝑚10 = 𝐸(𝑋1𝑌0)  

 = 𝐸(𝑋) 

𝑚01 = 𝐸(𝑋0𝑌1)  

 = 𝐸(𝑌) 

∴ 𝑚10 = 𝐸(𝑋) and 𝑚01 = 𝐸(𝑌)  

2. Three moments of the second order exists. 

𝑚20 = 𝐸(𝑋2𝑌0) = 𝐸(𝑋2)  

𝑚02 = 𝐸(𝑋0𝑌2) = 𝐸(𝑌2)  

𝑚11 = 𝐸(𝑋𝑌)  

∴ 𝑚20 = 𝐸(𝑋2),𝑚02 = 𝐸(𝑌2),𝑚11 = 𝐸(𝑋𝑌) . 

 

Definition. 

The central moment is denoted by 𝜇𝑙𝑛 

 𝜇𝑙𝑛 = 𝐸[(𝑋 − 𝑚10)
𝑙(𝑌 − 𝑚01)

𝑛] 
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Central moment of order 1: 

 𝜇10 = 𝐸[(𝑋 − 𝑚10)
1(𝑌 − 𝑚01)

0] 

  = 𝐸[(𝑋 − 𝑚10)] 

  = 𝐸[𝑋 − 𝐸(𝑋)] 

  = 𝐸(𝑋) − 𝐸(𝑋) = 0 

 𝜇10 = 0 

Similarly,  

 𝜇01 = 𝐸[(𝑌 − 𝑚01)] = 0 

Central moment of order 2: 

 𝜇20 = 𝐸[(𝑋 − 𝑚10)
2]  

  = 𝐸[𝑋2 +𝑚10
2 − 2𝑚10𝑋] 

  = 𝐸(𝑋2) + 𝑚10
2 − 2𝑚10𝐸(𝑋) 

  = 𝐸(𝑋2) + 𝑚10
2 − 2𝑚10

2 = 𝐸(𝑋2) −𝑚10
2  

 𝜇20 = 𝑚20 −𝑚10
2 = 𝜎1

2 

Similarly, 𝜇02 = 𝑚02 −𝑚01
2 = 𝜎2

2  

Where 𝜎1 and 𝜎2 are the standard deviation of the random variables 𝑋 and 𝑌 

respectively. 

𝜇11 = 𝐸[(𝑋 − 𝑚10)(𝑌 − 𝑚01)] is called co-variance and is denoted by 

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝑚10)(𝑌 − 𝑚01)]. 

Relation between the ordinary and centre moments 

 Let (𝑋, 𝑌) be the random variables and the expected values of 𝑋 and 𝑌 

exists. Then, 
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 𝜇20 = 𝑚20 −𝑚10
2  

 𝜇02 = 𝑚02 −𝑚01        
2  

 𝜇11 = 𝑚11 −𝑚10𝑚01 

Proof. 

 𝜇20 = 𝐸[(𝑋 − 𝑚10)
2] 

  = 𝐸[𝑋2 +𝑚10
2 − 2𝑚10𝑋 ] 

  = 𝐸(𝑋2) + 𝑚10
2 − 2𝑚10𝐸(𝑋) 

  = 𝐸(𝑋2) + 𝑚10
2 − 2𝑚10

2 = 𝐸(𝑋2) −𝑚10
2  

 ∴ 𝜇20 = 𝑚20 −𝑚10
2 = 𝜎1

2 

 𝜇02 = 𝐸[(𝑌 − 𝑚01)
2] 

  = 𝐸[𝑌2 +𝑚01
2 − 2𝑌𝑚01] 

  = 𝐸(𝑌2) + 𝑚01
2 − 2𝑚01

2 = 𝐸(𝑌2) − 𝑚01
2  

 ∴ 𝜇02 = 𝑚02 −𝑚01
2 = 𝜎2

2 

 𝜇11 = 𝐸[(𝑋 − 𝑚10)(𝑌 − 𝑚01)] 

  = 𝐸[𝑋𝑌 − 𝑚10𝑌 −𝑚01𝑋 +𝑚10𝑚01] 

  = 𝐸(𝑋𝑌) − 𝑚10𝐸(𝑌) −𝑚01𝐸(𝑋) + 𝑚10𝑚01 

  = 𝐸(𝑋𝑌) − 𝑚10𝑚01 −𝑚01𝑚10 +𝑚10𝑚01 

 𝜇11 = 𝑚11 −𝑚01𝑚10 

 ∴ 𝑐𝑜𝑣(𝑋, 𝑌) = 𝑚11 −𝑚01𝑚10 

 𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌). 
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Theorem 2.6. 

 The expected value of the sum of an arbitrary finite number of random 

variable, whose expected value exists, equals the sum of the expected values. 

Proof.  

 We prove this theorem by induction to an arbitrary finite number of random 

variables. 

Let the expected value 𝐸(𝑋) and 𝐸(𝑌) are exists.   

Let (𝑋, 𝑌) be  a random variable of the discrete type with jump points (𝑥𝑖 , 𝑦𝑘) 

and jumps 𝑃𝑖𝐾. 

Let 𝑍 = 𝑋 + 𝑌 

 𝐸(𝑍) = 𝐸(𝑋 + 𝑌) 

  = ∑ 𝑃𝑖𝐾(𝑥𝑖𝑖,𝐾 , 𝑦𝐾) 

  = ∑ (𝑃𝑖𝐾𝑥𝑖𝑖,𝐾 , 𝑃𝑖𝐾𝑦𝐾) 

  = ∑ 𝑃𝑖𝐾𝑥𝑖𝑖,𝐾 + ∑ 𝑃𝑖𝐾𝑖,𝐾 𝑦𝐾 

  = ∑ 𝑃𝑖.𝑥𝑖𝑖 + ∑ 𝑃.𝐾𝑖,𝐾 𝑥𝐾 

  = 𝐸(𝑋) + 𝐸(𝑌) 

 ∴ 𝐸(𝑋 + 𝑌) = 𝐸(𝑋) + 𝐸(𝑌) 

 ∑ 𝑃𝑖𝐾|𝑥𝑖𝑖,𝐾 , 𝑦𝐾|≤  ∑ 𝑃𝑖𝐾(|𝑥𝑖|𝑖,𝐾 , |𝑦𝐾|) 

        = ∑ 𝑃𝑖𝐾|𝑥𝑖|𝑖,𝐾 + ∑ 𝑃𝑖𝐾𝑖,𝐾 |𝑦𝐾| 

        = ∑ 𝑃𝑖.|𝑥𝑖𝑖 |+∑ 𝑃.𝐾𝐾 |𝑦𝐾|  

         < ∞     [∵ 𝐸(𝑋) 𝑎𝑛𝑑 𝐸(𝑌) < ∞ 

 ∴ 𝐸(𝑋 + 𝑌) is exists. 
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Suppose the random variable (𝑋, 𝑌) is of continuous type with density 𝑓(𝑥, 𝑦) 

Since 𝐸(𝑋) and 𝐸(𝑌) exists. 

∴ 𝐸(𝑋 + 𝑌) is exists. 

𝐸(𝑋 + 𝑉) = ∫ ∫ (𝑥 + 𝑦)𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞
  

       = ∫ ∫ (𝑥 𝑓(𝑥, 𝑦) + 𝑦𝑓(𝑥, 𝑦))𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞
 

      = ∫ ∫ 𝑥𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
∞

−∞
+ ∫ ∫ 𝑦𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦

∞

−∞

∞

−∞

∞

−∞
 

     = ∫ 𝑥[∫ 𝑓(𝑥, 𝑦)𝑑𝑦]𝑑𝑥
∞

−∞
+ ∫ 𝑦[∫ 𝑓(𝑥, 𝑦)𝑑𝑥 ]𝑑𝑦

∞

−∞

∞

−∞

∞

−∞
 

     = ∫ 𝑥𝑓1(𝑥)𝑑𝑥 + ∫ 𝑦 𝑓2(𝑦)𝑑𝑦
∞

−∞

∞

−∞
 

𝐸(𝑋 + 𝑌) = 𝐸(𝑋) + 𝐸(𝑌)  

∴ The result is true for two random variable. 

Assume that 𝑋1, 𝑋2, ……𝑋𝑛−1 be a random variable and the expected values 

𝐸(𝑋1), 𝐸(𝑋2), … . . 𝐸(𝑋𝑛−1) exist. Such that 𝐸(𝑋1, 𝑋2, ……𝑋𝑛−1) =

𝐸(𝑋1), 𝐸(𝑋2), … . . 𝐸(𝑋𝑛−1) 

Let 𝑋1, 𝑋2, ……𝑋𝑛 be random variable such that  𝐸(𝑋1), 𝐸(𝑋2), … . . 𝐸(𝑋𝑛) exists 

To prove: 

𝐸(𝑋1, 𝑋2, ……𝑋𝑛) = 𝐸(𝑋1), 𝐸(𝑋2), … . . 𝐸(𝑋𝑛)  

We know that 𝐸(𝑋1, 𝑋2, ……𝑋𝑛−1) and 𝐸(𝑋𝑛) exist  

⇒ 𝐸(𝑋1, 𝑋2, ……𝑋𝑛−1 + 𝑋𝑛) is exists. 

𝐸(𝑋1, 𝑋2, ……𝑋𝑛−1 + 𝑋𝑛) = 𝐸((𝑋1, 𝑋2, ……𝑋𝑛−1) + 𝑋𝑛) 

         = 𝐸(𝑋1, 𝑋2, ……𝑋𝑛−1) + 𝐸(𝑋𝑛) 

         = 𝐸(𝑋1) + 𝐸(𝑋𝑛) + ⋯… . 𝐸(𝑋𝑛) 
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∴ The result is true for 𝑛 number of random variable. 

∴ By induction hypothesis, the result is true for arbitrary finite number of random 

variables. 

Theorem 2.7. 

 The expected value of the product of the arbitrary finite number of 

independent random variable, whose expected values exists equals the product of 

the expected values of these variables. 

Proof. 

 We prove this theorem by induction to an arbitrary finite number of 

independent random variables. 

Let (𝑋, 𝑌) be a random variable of the discrete type such that 𝑋 and 𝑌 are 

independent variables. 

And 𝐸(𝑋) and 𝐸(𝑌) exist. 

𝐸(𝑋, 𝑌) = ∑ 𝑃𝑖𝑘𝑥𝑖𝑖,𝑘 , 𝑦𝑘  

 = ∑ 𝑃𝑖. 𝑃.𝑘𝑥𝑖𝑖,𝑘 𝑦𝑘 

 = ∑ 𝑃𝑖.𝑥𝑖𝑖  ∑ 𝑃.𝑘𝑘 𝑦𝑘 

 = 𝐸(𝑋)𝐸(𝑌) 

∴ 𝐸(𝑋𝑌) = 𝐸(𝑋)𝐸(𝑌)  

∑ 𝑃𝑖𝐾|𝑥𝑖𝑖,𝐾 , 𝑦𝐾| = ∑ 𝑃𝑖. 𝑃.𝐾|𝑥𝑖||𝑖,𝐾 𝑦𝐾|  =  ∑ 𝑃𝑖. |𝑥𝑖𝑖 | ∑  𝑃.𝐾𝐾 |𝑦𝐾| < ∞  

∴ 𝐸(𝑋𝑌) is exists. 

If (𝑋, 𝑌) is of continuous type 

𝐸(𝑋, 𝑌) = ∫ ∫ 𝑥𝑦𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞
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 = ∫ ∫ 𝑥𝑦 𝑓1(𝑥) 𝑓2(𝑦)𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞
    [∵ 𝑥 and 𝑦 are independent] 

 = ∫ 𝑥𝑓1(𝑥)𝑑𝑥 ∫ 𝑦 𝑓2(𝑦) 𝑑𝑦
∞

−∞

∞

−∞
 

= 𝐸(𝑋)𝐸(𝑌)  

∴ 𝐸(𝑋𝑌) = 𝐸(𝑋)𝐸(𝑌)  

∴ The result is true for two independent random variable. 

Suppose 𝑋1, 𝑋2, ……𝑋𝑛−1 are independent random variables such that 

𝐸(𝑋1), 𝐸(𝑋2), … . . 𝐸(𝑋𝑛−1) 

Let 𝑋1, 𝑋2, ……𝑋𝑛 are independent random variable. 

𝐸(𝑋1, 𝑋2, ……𝑋𝑛) = 𝐸((𝑋1, 𝑋2, ……𝑋𝑛−1)𝑋𝑛) 

     = 𝐸(𝑋1, 𝑋2, ……𝑋𝑛−1)𝐸(𝑋𝑛) 

     = 𝐸(𝑋1), 𝐸(𝑋2), … . . 𝐸(𝑋𝑛−1)𝐸(𝑋𝑛) 

∴ The result is true for n-independent random variable. 

Hence result is true for an arbitrary finite number of independent random variable. 

 

Corollary. 

The covariance of two independent random variable equals to 0. 

Proof.  

Since 𝑋 and 𝑌 are independent. 

By above theorem, 𝐸(𝑋𝑌) = 𝐸(𝑋)𝐸(𝑌) 

 ∴ 𝑐𝑜𝑣 (𝑋𝑖𝑌) = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌) = 0. 
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Problem 1. 

Let 𝑋 and 𝑌 are two random variable with variance 𝐷2(𝑋) and 𝐷2(𝑌). Let 

𝑍 = 𝑋 + 𝑌. Find the variance of 𝑍. 

Solution 

 Let 𝑍 = 𝑋 + 𝑌 

 𝐷2(𝑍) = 𝐷2(𝑋 + 𝑌) 

   = 𝐸[(𝑋 + 𝑌)2] − [𝐸(𝑋 + 𝑌)]2 

  = 𝐸[𝑋2 + 𝑌2 + 2𝑋𝑌] − [𝐸(𝑋) + 𝐸(𝑌)]2 

= 𝐸(𝑋2) + 𝐸(𝑌2) + 2𝐸(𝑋𝑌) − [(𝐸(𝑋))
2
+ (𝐸(𝑌))

2
+ 2𝐸(𝑋)𝐸(𝑌)]  

= 𝐸(𝑋2) − [𝐸(𝑋)]2 + 𝐸(𝑌2) − [𝐸(𝑌)]2 + 2𝐸(𝑋𝑌) − 2𝐸(𝑋)𝐸(𝑌) 

𝐷2(𝑋 + 𝑌) = 𝐷2(𝑋) + 𝐷2(𝑌) + 2𝐸(𝑋𝑌) − 2𝐸(𝑋)𝐸(𝑌)  

If 𝑋 and 𝑌 are independent random variable. 

𝐸(𝑋, 𝑌) = 𝐸(𝑋)𝐸(𝑌)  

∴ 𝐷2(𝑋 + 𝑌) = 𝐷2(𝑋) + 𝐷2(𝑌)  

Theorem 2.8. 

 The variance of the sum of an arbitrary finite number of independent 

random variable choose variance exist, equals the sum of the variance. 

Proof. as in theorem 2.6.2 

Conditional Expected value 

Definition. 

 Let (𝑋, 𝑌) be a random variable of the discrete type with jump points 

(𝑥𝑖 , 𝑦𝑘) and jumps 𝑃𝑖𝑘. Then the conditional expected value of the random 

variable 𝑌𝑙 under the condition 𝑋 = 𝑥𝑖  is 
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𝐸[𝑌𝑙|𝑋 = 𝑥𝑖] =∑𝑦𝑘
𝑙

𝑘

𝑝𝑖𝐾
𝑝𝑖 .

 

Similarly, the conditional expected value of 𝑋𝑙 given 𝑌 = 𝑦𝑘 is  

𝐸[𝑋𝑙|𝑌 = 𝑦𝑘] = ∑𝑥𝑖
𝑙

𝑖

𝑝𝑖𝑘
𝑝.𝑘 

 

Definition. 

 Let (𝑋, 𝑌) be two dimensional random variable of the continuous type with 

density function 𝑓(𝑥, 𝑦) and conditional density 𝑓1(𝑥) and 𝑓2(𝑦) exist, we obtain 

𝐸(𝑌𝑙|𝑋 = 𝑥) = ∫ 𝑦𝑙
∞

−∞

𝑓(𝑥, 𝑦)

𝑓1(𝑥)
𝑑𝑦 

𝐸(𝑋𝑙|𝑌 = 𝑦) = ∫ 𝑥𝑙
∞

−∞

𝑓(𝑥, 𝑦)

𝑓2(𝑥)
𝑑𝑥 

Remark.  

1. For every subset 𝑆 of the set of jump points 𝑥𝑖  of 𝑋, 

 𝐸(𝑌𝑙 + 𝑋 ∈ 𝑆) =∑𝑦𝑘
𝑙

𝑘

𝑃(𝑌 = 𝑦𝑘|𝑋 ∈ 𝑆) 

        = ∑ 𝑦𝑘
𝑙

𝑘
∑ 𝑝𝑖𝑘𝑥∈𝑆

∑ 𝑝𝑖.𝑥∈𝑆
 

∴ ∑ 𝑝𝑖 .𝑥∈𝑆

∑
𝑦𝑘
𝑙 𝑃𝑖𝑘
𝑝𝑖.

 𝑘

∑ 𝑝𝑖.𝑥𝑖∈𝑆
= ∑ (

𝑝𝑖.

∑ 𝑝𝑖.𝑥𝑖∈𝑆
 )  𝐸(𝑥𝑖∈𝑆 𝑦𝑘

𝑙 = 𝑥𝑖)   

𝐸(𝑌𝑙 + 𝑋 ∈ 𝑆) = 𝐸[𝐸(𝑌𝑙|𝑋 = 𝑥𝑖)|𝑋 ∈ 𝑆]…… (1)  

𝐸(𝑌𝑙) = ∑ ∑ 𝑦𝑘
𝑙

𝑘𝑖 𝑃𝑖𝑘  

  = ∑ 𝑝𝑖 .𝑖 𝐸(𝑌𝑙|𝑋 = 𝑥𝑖) 

 𝐸(𝑌𝑙) = 𝐸[𝐸(𝑌𝑙|𝑋)]  …… (2) 

Similarly, 
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 For a random variable (𝑋, 𝑌) of the continuous type for ever Borel set 𝑆 on 

the real axis for which 𝑃(𝑋 ∈ 𝑆) > 0, 

𝐸(𝑌𝑙|𝑋 ∈ 𝑆) = ∫ 𝑦𝑙 ∫
𝑓(𝑥, 𝑦)

𝑃(𝑋 ∈ 𝑆)
𝑑𝑥𝑑𝑦

𝑆

∞

−∞

 

     = ∫
𝑓1(𝑥)

𝑃(𝑋∈𝑆)
  ∫ 𝑦𝑙

𝑓(𝑥,𝑦)

𝑓1(𝑥)
𝑑𝑦 𝑑𝑥

∞

−∞𝑆
 

  𝐸(𝑌𝑙|𝑋 ∈ 𝑆) = ∫
𝑓1(𝑥)

𝑃(𝑋∈𝑆)
 𝐸(𝑌𝑙|𝑋 = 𝑥)

𝑆
𝑑𝑥 …… (3) 

Put 𝑆 = (−∞,∞) we obtain, 

𝐸(𝑌𝑙) = ∫ ∫ 𝑦𝑙𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞
  

 = ∫ 𝑓1(𝑥)𝐸(𝑌
𝑙|𝑋 = 𝑥)𝑑𝑥

∞

−∞
 

 = 𝐸[𝐸(𝑌𝑙|𝑥)] 

𝐸(𝑌𝑙) = 𝐸[𝐸(𝑌𝑙|𝑥)]     …… (4)  

Formulas (1)And (3) may be written as, 

𝐸(𝑌𝑙|𝑋 ∈ 𝑆) = 𝐸[𝐸(𝑌𝑙|𝑋 = 𝑥)|𝑋 ∈ 𝑆]  …… (5)  

(2) and (4) may be written as, 

𝐸(𝑌𝑙) = 𝐸[𝐸(𝑌𝑙|𝑥)]     …… (6)  

 

2. Consider a random variable (𝑋1, 𝑋2, ……𝑋𝑚) of the continuous type and 

suppose that the density functions 𝑓(𝑥1, 𝑥2, …… 𝑥𝑚) is everywhere continuous 

and the density of the marginal distribution 

∫ 𝑓(𝑥1, 𝑥2, ……𝑥𝑚)𝑑𝑥1 = 𝑔(𝑥2, ……𝑥𝑚)
∞

−∞

  

of the random variable (𝑋2, ……𝑋𝑚) is everywhere continuous and positive. 
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Conditional moments of order 𝑙(𝑙 = 1,2, … . . ) is 

𝐸(𝑋1
𝑙|𝑋2 = 𝑥2, ……𝑥𝑚 = 𝑥𝑚) = ∫ 𝑥1

𝑙∞

−∞

𝑓(𝑥1,𝑥2,……𝑥𝑚)

𝑔(𝑥2,……𝑥𝑚)
 𝑑𝑥1. 

Definition. 

The formula for the coefficient of correlation is the following: 

𝜌 =
𝐸[(𝑋−𝑚10)(𝑌−𝑚01)

√𝐸[(𝑋−𝑚10)2√𝐸[(𝑌−𝑚01)2
=

𝜇11

𝜎1𝜎2
  

 

Theorem 2.9. 

The co-efficient of correlation satisfies the double inequality −1 ≤ 𝜌 ≤ 1. 

Proof.  

For arbitrary real numbers 𝑡 and 𝑢, consider the non-negative expression 

𝐸{[𝑡(𝑋 − 𝑚10) + 𝑢(𝑌 − 𝑚01)]
2} 

 = 𝐸{𝑡2(𝑋 − 𝑚10)
2 + 𝑢2(𝑌 − 𝑚01)

2 + 2𝑡𝑢(𝑋 − 𝑚10)(𝑌 − 𝑚01)} 

 = 𝐸[𝑡2(𝑋2 +𝑚10
2 − 2𝑋𝑚10)] + 𝐸[𝑢

2(𝑌2 +𝑚01
2 − 2𝑌𝑚01)] +

𝐸[2𝑡𝑢(𝑋𝑌 −𝑚01𝑋 −𝑚10𝑌 +𝑚10𝑚01)] 

= 𝑡2[𝐸(𝑋2) + 𝑚10
2 − 2𝑚10𝐸(𝑋)] + 𝑢

2[𝐸(𝑌2) + 𝑚01 − 2𝑚01𝐸(𝑌)] +

2𝑡𝑢𝐸(𝑋𝑌) − 𝑚01𝐸(𝑋) − 𝑚10𝐸(𝑌) + 𝑚10𝑚01  

= 𝑡2[𝑚20 +𝑚10
2 − 2𝑚10𝑚10] + 𝑢

2[𝑚02 +𝑚01
2 − 2𝑚01𝑚01] + 2𝑡𝑢[𝑚11 −

𝑚01𝑚10 −𝑚10𝑚01 +𝑚10𝑚01]  

= 𝑡2[𝑚20 −𝑚10
2 ] + 𝑢2[𝑚02 −𝑚01

2 ] + 2𝑡𝑢[𝑚11 −𝑚10
2 −𝑚10𝑚01 +𝑚10

2 ] 

= 𝑡2 𝜎1
2 + 𝑢2𝜎2

2 + 2𝑡𝑢 𝜇11 

∴ 𝐸{[𝑡(𝑋 − 𝑚10) + 𝑢(𝑌 − 𝑚01)]
2}  
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= 𝑡2𝜎1
2 + 𝑢2𝜎2

2 + 2𝑡𝑢 𝜇11……(1)  

𝐿. 𝐻. 𝑆  of (1), is always non-negative, we must have 

∴ 𝜇11
2 − 𝜎1

2𝜎2
2 ≤ 0                  [∵ |

𝑎 ℎ
ℎ 𝑏

| ≥ 0     |
𝜎1
2 𝜇11

𝜇11 𝜎2
2 | ≥ 0   

⇒ 𝜎1
2𝜎2

2 − 𝜇11
2 ≥ 0 

⇒ 𝜇11
2 ≤ 𝜎1

2𝜎2
2  

⇒ 𝜇11 ≤ ±𝜎1𝜎2  

⇒ −𝜎1𝜎2 ≤ 𝜇11 ≤ 𝜎1𝜎2  

⇒ −1 ≤
𝜇11

𝜎1𝜎2
≤ 1  

⇒ −1 ≤ 𝜌 ≤ 1  

Note.  

1. If the random variable 𝑋 and 𝑌 are independent 𝑐𝑜𝑣(𝑋, 𝑌) = 𝜇11 = 0 

∴ 𝜌 = 0  

If the random variable 𝑋 and 𝑌 are independent, then 𝜌 = 0 

2. But the converse is not true  

If 𝜌 = 0 we say that 𝑋 and 𝑌 are uncorrelation. 

 

Theorem 2.10 

 The equality 𝜌2 = 1 is the necessary and sufficient condition for the 

relation 𝑃(𝑌 = 𝑎𝑋 + 𝑏) = 1 to hold. 

Proof. 

Suppose that 𝑃(𝑌 = 𝑎𝑋 + 𝑏) = 1 

 i.e., 𝑃(𝑌 ≠ 𝑎𝑋 + 𝑏) = 0 
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We know that, 

𝑚01 = 𝐸(𝑌) 

= 𝑃(𝑌 = 𝑎𝑋 + 𝑏)𝐸(𝑌|𝑌 = 𝑎𝑋 + 𝑏) + 𝑃(𝑌 ≠ 𝑎𝑋 + 𝑏)𝐸(𝑌|𝑌 ≠ 𝑎𝑋 + 𝑏)  

= 𝐸(𝑌|𝑌 = 𝑎𝑋 + 𝑏) + 0 

= 𝐸(𝑎𝑋 + 𝑏) 

= 𝑎𝐸(𝑋) + 𝑏 

𝑖. 𝑒. , 𝑚01 = 𝑎𝑚10 + 𝑏  …… (1) 

𝜎2
2 = 𝐸[(𝑌 −𝑚01)

2] 

= 𝑃[𝑌 = 𝑎𝑋 + 𝑏]𝐸[(𝑌 − 𝑚01)
2|𝑌 = 𝑎𝑋 + 𝑏]

+ 𝑃(𝑌 ≠ 𝑎𝑋 + 𝑏)𝐸[(𝑌 − 𝑚01)
2|𝑌 ≠ 𝑎𝑋 + 𝑏] 

= 𝐸[(𝑌 − 𝑚01)
2|𝑌 = 𝑎𝑋 + 𝑏] 

= 𝐸[(𝑎𝑋 + 𝑏 −𝑚01)
2] 

= 𝐸[(𝑎𝑋 + 𝑏 − 𝑎𝑚10 − 𝑏)
2] 

= 𝐸[𝑎2(𝑋 − 𝑚10)
2] = 𝑎2𝐸[(𝑋 − 𝑚10)

2] 

𝑖. 𝑒. , 𝜎2
2 = 𝑎2𝜎1

2        → (2) 

 𝜇11 = 𝐸[(𝑋 − 𝑚10)(𝑌 − 𝑚01)] = 𝐸[(𝑋 − 𝑚10)(𝑎𝑋 + 𝑏 −𝑚01)] 

  = 𝐸[(𝑋 − 𝑚10)(𝑎𝑋 + 𝑏 − 𝑎𝑚10 − 𝑏)]    𝑢𝑠𝑖𝑛𝑔 (1) 

  = 𝐸[𝑎(𝑋 − 𝑚10)
2] 

 𝜇11 = 𝑎𝐸[(𝑋 − 𝑚10)
2] 

 𝜇11 = 𝑎𝜎1
2 

 𝜌 =
𝜇11

𝜎1𝜎2
=

𝑎𝜎1
2

𝜎1𝑎𝜎1
= 1 
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 ∴ 𝜌2 = 1 

Conversely, Suppose that 𝜌2 = 1 

 
𝜇11
2

𝜎1
2𝜎2

2 = 1 

𝜇11
2 = 𝜎1

2𝜎2
2  

𝜎1
2𝜎2

2 − 𝜇11
2 = 0      → (2)  

𝜇20𝜇02 − 𝜇11
2 = 0  

For arbitrary real number 𝑡 and 𝑢 consider the non-negative expression 

𝐸{[𝑡(𝑋 − 𝑚10) + 𝑢(𝑌 − 𝑚01)]
2}  

= 𝐸{𝑡2(𝑋 − 𝑚10)
2 + 𝑢(𝑌 − 𝑚01)

2 + 2𝑡𝑢(𝑋 −𝑚10)(𝑌 − 𝑚01)} 

 = 𝐸{𝑡2[𝑋2 +𝑚10
2 − 2𝑋𝑚10]} + 𝐸{𝑢

2[𝑌2 +𝑚01
2 − 2𝑌𝑚01]} +

𝐸{2𝑡𝑢[𝑋𝑌 − 𝑋𝑚01 − 𝑌𝑚10 +𝑚10𝑚01]} 

 = {𝑡2[𝐸(𝑋2) + 𝑚10
2 − 2𝑚10𝐸(𝑋)] + 𝑢

2[𝐸(𝑌2) +𝑚01
2 − 2𝑚01𝐸(𝑌)] +

2𝑡𝑢[𝐸(𝑋𝑌) − 𝑚01𝐸(𝑋) − 𝑚10𝐸(𝑌) + 𝑚10𝑚01]} 

 = 𝑡2[𝑚20 +𝑚10
2 − 2𝑚10𝑚10] + 𝑢

2[𝑚02 +𝑚01
2 − 2𝑚01𝑚01] +

2𝑡𝑢[𝑚11 −𝑚01𝑚10 −𝑚10𝑚01 +𝑚10𝑚01] 

 = 𝑡2[𝑚20 −𝑚10]
2 + 𝑢2[𝑚02 −𝑚01

2 ] + 2𝑡𝑢[𝑚11 −𝑚01𝑚10] 

 = 𝑡2𝜎1
2 + 𝑢2𝜎2

2 + 2𝑡𝑢𝜇11     → (4) 

Since LHS of (4) is always non-negative. 

𝜎1
2𝜎2

2 − 𝜇11
2 ≥ 0  

i.e, 𝜇20𝜇02 − 𝜇11
2 ≥ 0 

but (3) ⇒ 𝜇20𝜇02 − 𝜇11
2 = 0 
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Then the quadratic form equation (4) takes on the value zero for some pair of 

values 𝑡 = 𝑡0 and 𝑢 = 𝑢0 where atleast one of the value 𝑡0 and 𝑢0 is not zero. 

For these values 𝑡0 and 𝑢0 we have 

𝐸{[𝑡(𝑋 − 𝑚10) + 𝑢(𝑌 − 𝑚01)]
2} = 0 

This equation is satisfy only when we have the equation  

𝑃[𝑡0(𝑋 −𝑚10) + 𝑢0(𝑌 − 𝑚01) = 0] = 1  

Suppose that 𝑢0 ≠ 0 

𝑃 [
𝑡0𝑋

𝑢0
−
𝑡0𝑚10

𝑢0
+ 𝑌 −

𝑢0𝑚01

𝑢0
= 0] = 1 

𝑃 [𝑌 =
−𝑡0
𝑢0

𝑋 +
𝑚01𝑢0 +𝑚10𝑡𝑜

𝑢0
] = 1 

i.e., 𝑃[𝑌 = 𝑎𝑋 + 𝑏] = 1, where 𝑎 =
−𝑡0

𝑢0
 and 𝑏 =

𝑚01𝑢0+𝑚10𝑡0

𝑢0
. 

 

Definition. 

 Consider the n-dimensional random variables (𝑋1, 𝑋2, …… , 𝑋𝑛). Suppose 

that the variance 𝜎𝑖
2, (𝑖 = 1,2,… . . , 𝑛) of the random variable 𝑋𝑖 exists and are 

positive. Then the covariance of all pairs of these random variables are also exist. 

 Let 𝜆𝑖𝑘 and 𝑃𝑖𝑘 be the co-variance and the co-efficient of correaltion of 𝑋𝑖 

and 𝑋𝑘 respectively. 

The symmetric matrix 

𝑀 =

[
 
 
 
 
𝜆11 𝜆12…… 𝜆1𝑛
𝜆21 𝜆22…… 𝜆2𝑛.
.
𝜆𝑛1

.

.
𝜆𝑛2

……

.

.
𝜆𝑛𝑛]
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is called the matrix of second order moments. The determinant of the matrix 𝑀 

is denoted by |𝑀|. 

 

Theorem 2.11. 

The probability that the random variable 𝑋1, 𝑋2, … . . 𝑋𝑛 whose variation 

exists, satisfy atleast one linear relation equals 1 iff |𝑀| = 0 

Proof. 

By the previous theorem, If 𝜌2 = 1 is a necessary and sufficient condition for the 

relation 𝑃(𝑌 = 𝑎𝑋 + 𝑏) = 1 to hold. 

 If 𝐸 {[∑ 𝑡𝑖
𝑛
𝑖=1 (𝑋𝑖 − 𝐸(𝑋𝑖))]

2
} = ∑ 𝜆𝑖𝑘

𝑛
𝑖,𝑘=1 𝑡𝑖𝑡𝑘 ≥ 0 

There are linear relation among 𝑋1, 𝑋2, … . . , 𝑋𝑛 and by the definition we get 

|𝑀| = 0 

 Conversely, if |𝑀| = 0 then the whose mass of probability is concentrate 

on a hyper plane of dimension less than 𝑛. 

i.e, 𝑃(𝑌 = 𝑎𝑋 + 𝑏) = 1 

∴ There exist a linear relation 𝑋1, 𝑋2, … . . , 𝑋𝑛 among themselves. 

Definition 

 If the components 𝑋1, 𝑋2, …… , 𝑋𝑛 of the random vector (𝑋1, 𝑋2, … . . 𝑋𝑛) 

satisfy atleast one linear relation with probability 1, then the distribution 

(𝑋1, 𝑋2, ……𝑋𝑛) is degenerate. 

If the determinant |𝑀| ≠ 0, the distribution of (𝑋1, 𝑋2, … , 𝑋𝑛) is nondegenerate.  

 

Definition.  
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 The determinant |𝑀| is called the generalized variance. 

 

Definition 

 The expression √|𝑅| is called the scattered coefficient, the  𝑅 is the matrix 

of the correlation coefficient 𝑃𝑖𝑘, taking 𝜌𝑖𝑖 = 1; 

∴ 𝑅 = [
1 𝜌12…… 𝜌1𝑛
𝜌21 1…… 𝜌2𝑛
𝜌𝑛1 𝜌𝑛2…… 𝜌𝑛𝑛

] 

Remark.  

We know that, 𝜌𝑖𝑘 =
𝜆𝑖𝑘

𝜎𝑖𝜎𝑘
 

Clearly |𝑀| = 𝜎1
2𝜎2

2……𝜎𝑛
2|𝑅| 

The matrix 𝑅 is also symmetric and its determinant satisfies the relation |𝑅| ≤ 1. 

 

2.7. Regression of First type 

 Let (𝑋, 𝑌) be a two-dimensional random variable of the discrete type with 

jump point (𝑥𝑖 , 𝑦𝑘), and jumps 𝑝𝑖𝑘 and let 𝑃𝑖 . and 𝑃.𝑘 denote the probabilities in 

the marginal distribution of 𝑋 and 𝑌 respectively. 

 Consider the conditional expectations of 𝑋 and 𝑌 denoted by 𝑚1(𝑦𝑘) and 

𝑚2(𝑥𝑖) respectively. Thus 

𝑚1(𝑦𝑘) = 𝐸(𝑋|𝑌 = 𝑦𝑘) =∑𝑥𝑖
𝑖

𝑃𝑖𝑘
𝑃.𝑘
  → (1) 

𝑚2(𝑥𝑖) = 𝐸(𝑌|𝑋 = 𝑥𝑖) =∑𝑦𝑘
𝑘

𝑃𝑖𝑘
𝑃𝑖.
  → (2) 
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We obtain two collection of points in the plane (𝑥, 𝑦) from (1) consist of points 

with co-ordinate 𝑥 = 𝑚1(𝑦𝑘), 𝑦 = 𝑦𝑘 

From (2), consist of points with co-ordinates 𝑥 = 𝑥𝑖 , 𝑦 = 𝑚2(𝑥𝑖). 

Definition. 

 Let (𝑋, 𝑌) be a two-dimensional random variable of the continuous type 

with density 𝑓(𝑥, 𝑦) and marginal densities 𝑓1(𝑥) and 𝑓2(𝑦). The conditional 

expectations 𝑚1(𝑦) and 𝑚2(𝑥) are   

𝑚1(𝑦) = 𝐸(𝑋|𝑌 = 𝑦) = ∫ 𝑥
∞

−∞

𝑓(𝑥, 𝑦)

𝑓2(𝑦)
𝑑𝑥    → (3) 

𝑚2(𝑦) = 𝐸(𝑌|𝑋 = 𝑥) = ∫ 𝑦
∞

−∞

𝑓(𝑥, 𝑦)

𝑓1(𝑥)
𝑑𝑦    → (4) 

Again we obtain two collection of points in the plane (𝑥, 𝑦) with the respective 

coordinates 

From (3), 𝑙 = 𝑚1(𝑦), 𝑦 

From (4), 𝑥, 𝑦 = 𝑚2(𝑥) 

𝑥 = 𝑥𝑖 , 𝑦 = 𝑚2(𝑥𝑖). 

  

Example 1.  

 The random variable 𝑋 and 𝑌 have the joint density given by the formula 

𝑓(𝑥, 𝑦) =
1

2𝜋
exp (−

𝑥2−2𝑥𝑦+2𝑦2

2
) Find the correlation coefficient (or) Find the 

correlation coefficient of two-dimensional normal distribution. 

Solution. 

𝑓(𝑥, 𝑦) =
1

2𝜋
exp (−

𝑥2−2𝑥𝑦+2𝑦2

2
)  
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This is a density function, since it is non-negative 

And ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞
= ∫ ∫

1

2𝜋
𝑒
−(

𝑥2−2𝑥𝑦+2𝑦2

2
)∞

−∞
𝑑𝑥 𝑑𝑦

∞

−∞
 

                     =
1

√2𝜋 
 ∫ 𝑒−

𝑦2

2
∞

−∞
 (

1

√2𝜋 
∫ 𝑒−

(𝑥−𝑦)2

2 𝑑𝑥
∞

−∞
) 𝑑𝑦  

                     =
1

√2𝜋 
∫ 𝑒−

𝑦2

2
∞

−∞
(1)𝑑𝑦        [∵ 𝑡 = 𝑥 − 𝑦 𝑑𝑡 =

𝑑𝑥 
1

√2𝜋 
∫ 𝑒−

(𝑥−𝑦)2

2
∞

−∞
𝒅𝒙 =

1

√2𝜋 
∫ 𝑒−

𝑡2

2
∞

−∞
𝑑𝑡] 

       =
1

√2𝜋 
∫ 𝑒−

𝑦2

2
∞

−∞
𝑑𝑦 

    = 1 

Clearly, 𝑋~𝑛(0,1)  & 𝑌~ ∩ (0,1) 

𝑚10 = 𝐸(𝑋1𝑌0) = ∫ ∫ 𝑥𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞
  

        =
1

√2𝜋 
∫ 𝑒−

𝑦2

2
∞

−∞
(

1

√2𝜋 
∫ 𝑥 𝑒

−(
(𝑥−𝑦)2

2
)∞

−∞
𝒅𝒙 )𝒅𝒚 

       =
1

√2𝜋 
∫ 𝑦𝑒−

𝑦2

2
∞

−∞
𝑑𝑦 

𝑚10 = 0  

𝐸(𝑋0𝑌1) = 𝑚01 =
1

2𝜋
∫ 𝑦𝑒−𝑥

2∞

−∞
  

                 =
1

2𝜋
∫ ∫ 𝑦𝑒

−(
𝑥2−2𝑥𝑦+2𝑦2

2
)∞

−∞

∞

−∞
𝑑𝑦 𝑑𝑥 

               =
1

2𝜋
∫ ∫ 𝑦

∞

−∞
𝑒
−(

𝑥2

2
+(𝑦−

𝑥

2
)
2
)
𝑑𝑦 𝑑𝑥

∞

−∞
  

              =
1

2𝜋
∫ 𝑒−

𝑥2

4
∞

−∞
(∫ 𝑦𝑒

−(𝑦−
𝑥

2
)
2

∞

−∞
𝑑𝑦 ) 𝑑𝑥  
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             =
1

√2𝜋 
∫ 𝑒−

𝑥2

4
∞

−∞
(
1

√𝜋 
∫ 𝑦𝑒−(𝑦−

𝑥

2
)
2

∞

−∞
𝑑𝑦)𝑑𝑥 

          =
1

√2𝜋 
∫ 𝑒−

𝑥2

4
∞

−∞
(
𝑥

2
) 𝑑𝑥 =

1

√2𝜋 
∫

𝑥

2
𝑒−

𝑥2

4
∞

−∞
𝑑𝑥 = 0 

𝜇11 = 𝑚11 −𝑚01𝑚10  

       = 𝑚11 

       =
1

2𝜋
∫ ∫ 𝑥𝑦 𝑒

−(
𝑦2

2
)∞

−∞
𝑒−

(𝑥−𝑦)2

2
∞

−∞
𝑑𝑥 𝑑𝑦 

      =
1

√2𝜋 
∫ 𝑦 𝑒

−(
𝑦2

2
)∞

−∞
(

1

√2𝜋 
∫ 𝑥𝑒−

(𝑥−𝑦)2

2
∞

−∞
𝑑𝑥) 𝑑𝑦 

     =
1

√2𝜋 
∫ 𝑦𝑒

−(
𝑦2

2
)∞

−∞
(𝑦)𝑑𝑦 

      =
1

√2𝜋 
∫ 𝑦2𝑒−

𝑦2

2
∞

−∞
𝑑𝑦 

      = 𝐸(𝑌2) 

𝜇11 = 1  

𝜇20 = 𝑚20𝑚10
2   

       =
1

2𝜋
∫ ∫ 𝑥2𝑒−

𝑦2

2
∞

−∞
𝑒−

(𝑥−𝑦)2

2
∞

−∞
𝑑𝑥 𝑑𝑦 

      =
1

√2𝜋 
∫ 𝑒−

𝑦2

2
∞

−∞
[
1

√2𝜋 
∫ 𝑥2𝑒−

(𝑥−𝑦)2

2
∞

−∞
𝑑𝑥] 𝑑𝑦 

     =
1

√2𝜋 
∫ 𝑒−

𝑦2

2
∞

−∞
[
1

√2𝜋 
∫ (𝑡2 + 𝑦2 + 2𝑡𝑦)𝑒−

𝑡2

2
∞

−∞
 𝑑𝑡] 

    =
1

√2𝜋 
∫ 𝑒−

𝑦2

2
∞

−∞
[−

1

√2𝜋 
∫ 𝑡2𝑒−

𝑦2

2
∞

−∞
𝑑𝑡 +

1

√2𝜋 
∫ 𝑦2𝑒−

𝑡2

2
∞

−∞
𝑑𝑡 +

1

√2𝜋 
∫ 2𝑡𝑦𝑒−

𝑡2

2
∞

−∞
𝑑𝑡] 
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=
1

√2𝜋 
∫ 𝑒−

𝑦2

2
∞

−∞
[
2

√2𝜋 
×
√2𝜋

2
+ 𝑦2 + 0] 𝑑𝑦  

=
1

√2𝜋 
∫ 𝑒−

𝑦2

2
∞

−∞
[1 + 𝑦2]𝑑𝑦  

=
1

√2𝜋 
∫ 𝑒−

𝑦2

2
∞

−∞
𝑑𝑦 +

1

√2𝜋 
∫ 𝑦2𝑒−

𝑦2

2
∞

−∞
𝑑𝑦  

= 1 +
2

√2𝜋 

√2𝜋

2
= 1 + 1 = 2  

𝜇02 =
1

2𝜋
 ∫ ∫ 𝑦2𝑒−

𝑦2

2
∞

−∞
𝑒−

(𝑥−𝑦)2

2
∞

−∞
 𝑑𝑥 𝑑𝑦  

   =
1

√2𝜋 
∫ 𝑦2𝑒−

𝑦2

2  
∞

−∞
(

1

√2𝜋 
∫ 𝑒−

(𝑥−𝑦)2

2
∞

−∞
𝑑𝑥)𝑑𝑦  

    =
1

√2𝜋 
∫ 𝑦2𝑒−

𝑦2

2
∞

−∞
𝑑𝑦 

 =
1

√2𝜋 
2 ∫ 𝑦2𝑒−

𝑦2

2
∞

0
𝑑𝑦  

𝜇02 =
2

√2𝜋

√2𝜋

2
= 1  

𝜌 =
𝜇11

𝜎1𝜎2
  

𝜇20 = 𝜎1
2 = 2, 𝜇02 = 𝜎1

2 = 1  

𝜎1 = 1  

𝜎1 = √2  

𝜌 =
1

√2
 . 

Definition.  



 

 

122 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

 The set of points of the plane (𝑥, 𝑦) with coordinates given by 𝑥 =

𝑚1(𝑦𝑘), 𝑦 = 𝑦𝑘   (or) 𝑥 = 𝑚1(𝑦), 𝑦 is called the regression curve of the random 

variable 𝑿 on the random variable 𝒀. 

 The set of points of the plane (𝑥, 𝑦) with coordinates given by 𝑥 = 𝑥𝑖 , 𝑦 =

𝑚2(𝑥𝑖) (𝑜𝑟)𝑥, 𝑦 = 𝑚2(𝑥𝑖) is called the regression curve of the random variable 

𝒀 on the random variable 𝑿. 

Remark: 

1. If all the points of the regression curve lie on a straight line, then there is a 

linear regression. 

2. If 𝑋 & 𝑌 are independent 

𝑚2(𝑥) = 𝐸(𝑌|𝑋 = 𝑥) = 𝐸(𝑌) 

   𝑚1(𝑦) = 𝐸(𝑋|𝑌 = 𝑦) = 𝐸(𝑋)   

 Here,  

  𝑚2(𝑥) is independent of 𝑥 then the regression curve of 𝑌 on 𝑋 lies 

on a line parallel to the x-axis. 

Similarly, 

 The regression curve of 𝑋 on 𝑌 lies on a line parallel to the y-axis. 

 These, two lines intersect at the point with coordinates (𝑚1,𝑚2). 

 

Example 2. 

 Find the regression curves for the two-dimensional normal distribution 

given in example 1. 

Solution. 

 𝑓1(𝑥) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑦
∞

−∞
= ∫

1

2𝜋

∞

−∞
𝑒
−(

𝑥2−2𝑥𝑦+2𝑦2

2
)
𝑑𝑦 
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  =
1

2𝜋
∫ 𝑒−

𝑥2

2
∞

−∞
𝑒−(𝑦−

𝑥

2
)
2

𝑑𝑦 

  =
1

2𝜋
𝑒−

𝑥2

2
 ∫ 𝑒−𝑡

2∞

−∞
𝑑𝑡 

  =
1

2𝜋
𝑒−

𝑥2

2
 2∫ 𝑒−𝑡

2∞

−∞
𝑑𝑡 

  =
1

𝜋
𝑒−

𝑥2

2
 √𝜋

2
 

 𝑓1(𝑥) =
1

2√𝜋
𝑒−

𝑥2

2
 
 

 𝑓2(𝑥) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
∞

−∞
 

  = ∫
1

2𝜋
𝑒−

𝑦2

2
∞

−∞
𝑒
(𝑥−𝑦)2

2 𝑑𝑥 

  =
1

√2𝜋
𝑒−

𝑦2

2
 (

1

√2𝜋
∫ 𝑒−

𝑡2

2
∞

−∞
𝑑𝑡)        𝑡 = 𝑥 − 𝑦 

𝑑𝑡 = 𝑑𝑥  

 𝑓2(𝑥) =
1

√2𝜋
𝑒−

𝑦2

2
 
 

We know that 

 𝑓(𝑦|𝑥) =
𝑓(𝑥,𝑦)

𝑓1(𝑥)
  & 𝑓(𝑥|𝑦) =

𝑓(𝑥,𝑦)

𝑓2(𝑥)
 

 𝑓(𝑦|𝑥) =
1

2𝜋
𝑒
−(
𝑥2−2𝑥𝑦+2𝑦2

2 ) 

1

√2𝜋
𝑒
−(
𝑥2

4  )
 

  =
1

2𝜋
 𝑒
−(
𝑥2

4  )
𝑒
−(𝑦−

𝑥
2)
2

1

2√𝜋
𝑒
−(
𝑥2

4  )
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 𝑓(𝑦|𝑥) =
1

√𝜋
 𝑒−(𝑦−

𝑥

2
)
2
 
 

 𝑓(𝑥|𝑦) =
1

2𝜋
𝑒
−
𝑦2

2   𝑒
−
(𝑥−𝑦)2

2  

1

√2𝜋
𝑒
−
𝑦2

2  
 

 𝑓(𝑥|𝑦) =
1

√2𝜋
𝑒−

(𝑥−𝑦)2

2
 
 

 𝑚2(𝑥) = ∫ 𝑦
𝑓(𝑥,𝑦)

𝑓1(𝑥)

∞

−∞
𝑑𝑦 = ∫ 𝑦 𝑓(𝑦|𝑥)𝑑𝑦

∞

−∞
 

  = ∫ 𝑦 
1

√2𝜋
𝑒−(𝑦−

𝑥

2
)
2
 ∞

−∞
𝑑𝑦 

  =
1

√𝜋
∫ 𝑦 𝑒

−(𝑦−
𝑥

2
)
2
 ∞

−∞
𝑑𝑦    𝑡 = 𝑦 −

𝑥

2
 

  =
1

√𝜋
∫ (𝑡 +

𝑥

2
) 𝑒−𝑡

2∞

−∞
𝑑𝑡    𝑑𝑡 = 𝑑𝑦 

  =
1

√𝜋
∫ 𝑡𝑒−𝑡

2∞

−∞
𝑑𝑡 +

1

√𝜋

𝑥

2
∫ 𝑒−𝑡

2∞

−∞
 𝑑𝑡  𝑦 = 𝑡 +

𝑥

2
 

  = 0 +
1

√𝜋
2
𝑥

2
∫ 𝑒−𝑡

2∞

0
𝑑𝑡 

  =
1

√𝜋
𝑥.
√𝜋

2
 

 𝑚2(𝑥) =
𝑥

2
 

 𝑚1(𝑥) = ∫ 𝑥𝑓 (
𝑥

𝑦
) 𝑑𝑥

∞

−∞
 

  = ∫ 𝑥
1

√2𝜋
𝑒−

(𝑥−𝑦)2

2
 ∞

−∞
𝑑𝑥 

  =
1

√2𝜋
∫ 𝑥 𝑒−

(𝑥−𝑦)2

2
∞

−∞
𝑑𝑥 

  =
1

√2𝜋
∫ (𝑡 + 𝑦)𝑒−

𝑡2

2
∞

−∞
𝑑𝑡 
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 ∴ 𝑚2(𝑥) =
𝑥

2
  & 𝑚1(𝑦) = 𝑦 

The regression curves are straight lines. 

 

Example 4. 

 The random variable (𝑋, 𝑌) can take on the pairs of values (𝑥𝑘 , 𝑦𝑙)(𝑘, 𝑙 =

1,2,3,4,5), where 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 3, 𝑥4 = 4, 𝑥5 = 5, 𝑦1 = 1, 𝑦2 = 2, 𝑦3 =

3, 𝑦4 = 4, 𝑦5 = 5. The probabilities 𝑃𝑘𝑙  for the particular pairs (𝑥𝑘 , 𝑦𝑙) are given 

in below table. 

Probabilities 𝑃𝑘𝑙 

𝑦𝑙 

𝑥𝑘 Marginal 

distribution 

of the 

random 

variable 𝑌 

1 2 3 4 5 

1 1/12 1/24 0 1/24 1/30 1/5 

2 1/24 1/24 1/24 1/24 1/30 1/5 

3 1/12 1/24 1/24 0 1/30 1/5 

4 1/12 0 1/24 1/24 1/30 1/5 

5 1/24 1/24 1/24 1/24 1/30 1/5 

Marginal 

distribution 

of the 

random 

variable 𝑌 

1/3 1/6 1/6 1/6 1/6 1 

Conditional distribution of 𝑌 under the condition 𝑋 = 𝑥𝑘 where 𝑘 = 1,2,3,4,5 are 

the given in the below table. 
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𝑥𝑘 𝑥𝑘 

𝑦𝑙 1 2 3 4 5 𝑦𝑙 1 2 3 4 5 

1 ¼ ¼ 0 ¼ 1/5 1 5

/12 

5

/24 

0 5

/24 

1/6 

2 1/8 ¼ ¼ ¼ 1/5 2 5

/24 

5

/24 

5

/24 

5

/24 

1/6 

3 ¼ ¼ ¼ 0 1/5 3 5

/12 

5

/24 

5

/24 

0 1/6 

4 ¼ 0 ¼ ¼ 1/5 4 5

/12 

0 5

/24 

5

/24 

1/6 

5 1/8 ¼ ¼ ¼ 1/5 5 5

/24 

5

/24 

5

/24 

5

/24 

2/6 

Total  1 1 1 1 1       

Find the conditional expected value of one random variable under the condition 

that the second take on a given condition. 

 i.e., Find 𝐸(𝑌|𝑋 = 𝑥𝑘)   𝑘 = 1,2, … . . ,5 

   𝐸(𝑋|𝑌 = 𝑦𝑙)  𝑙 = 1,2, … . . ,5 

    (or)  

 Find the regression curve of 𝑌 on 𝑋 and the regression curve of 𝑋 on 𝑌 

  𝐸(𝑌|𝑋 = 1) =
1

4
. 1 +

1

8
. 2 +

1

4
. 3 +

1

4
. 4 +

1

8
. 5 

    = 2
7

8
 

  𝐸(𝑌|𝑋 = 2) = 2
3

4
 

  𝐸(𝑌|𝑋 = 3) = 3
1

2
 

  𝐸(𝑌|𝑋 = 4) = 3 
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  𝐸(𝑌|𝑋 = 5) = 3 

Similarly, 

 𝐸(𝑋|𝑌 = 2) =
5

24
. 1 +

5

24
. 2 +

5

24
. 3 +

5

24
. 4 +

1

6
. 1 

   = 2.
11

12
 

 𝐸(𝑋|𝑌 = 1) = 2.
1

2
 

 𝐸(𝑋|𝑌 = 3) = 2.
7

24
 

 𝐸(𝑋|𝑌 = 4) = 2.
17

24
 

 𝐸(𝑋|𝑌 = 5) = 2.
11

12
 

1. Consists of the points with coordinates 𝑥 = 𝑥𝑘 , 𝑦 = 𝐸(𝑌|𝑋 = 𝑥𝑘) (𝑘 =

1,2, … . ,5) 

The points of (1) from the regression curve of 𝑌 on 𝑋 

2. Consists of the points with coordinates 𝑦 = 𝑦𝑖, 𝑥 = 𝐸(𝑋|𝑌 = 𝑦𝑙) (𝑙 =

1,2, … ,5) 

The points of (2) from the regression curve of 𝑋 on 𝑌. 

 

Remark.  

1. The regression curve of the random variable 𝑌 on the random variable 𝑋 

satisfies the relation 𝐸{[𝑌 − 𝑚2(𝑋)]
2} = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

i.e., the mean quadratic deviation of 𝑌 form a function 

𝑢(𝑋) gets its minimum when 𝑢(𝑋) gets its minimum when 𝑢(𝑋) equals 

𝑚2(𝑋) with probability 1. 
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2. Suppose (𝑋, 𝑌) is a two-dimensional random variable of the cts type with 

density 𝑓(𝑥, 𝑦) 

𝐸{[𝑌 − 𝑢(𝑋)]2} = ∫ 𝑓1(𝑥)[𝑌 − 𝑢(𝑋)]
2∞

−∞
𝑓(𝑦|𝑥)𝑑𝑦} 𝑑𝑥 → (1)  

R.H.S of (1) takes its minimal value when 𝑢(𝑥) = 𝑚2(𝑥). 

3. Let 𝑓(𝑥1, 𝑥2, …… , 𝑥𝑛) be the density function of the random variable 

(𝑋1, 𝑋2, …… , 𝑋𝑛). Suppose that the conditional moment for 𝑙 = 1 exist. 

𝐸(𝑋1
𝑙|𝑋2 = 𝑥2, 𝑋3 = 𝑥3, … . . 𝑋𝑚 = 𝑥𝑚) = ∫ 𝑥1

𝑙
∞

−∞

𝑓(𝑥1, 𝑥2, … . . , 𝑥𝑚)

𝑔(𝑥2, 𝑥3, … . . 𝑥𝑚)
𝑑𝑥1 

𝑚1(𝑥2, … . . , 𝑥𝑛) =
∫ 𝑥1𝑓(𝑥1, 𝑥2, … . , 𝑥𝑛)𝑑𝑥1
∞

−∞

∫ 𝑓(𝑥1, 𝑥2, … . . , 𝑥𝑛)𝑑𝑥1
∞

−∞

 

 

Definition. 

 The set of points of the n-dimensional space (𝑥1, 𝑥2, … . . , 𝑥𝑛) with the 

coordinates 

𝑥1 = 𝑚1(𝑥2, 𝑥3, … . . , 𝑥𝑛),  𝑥2, 𝑥3, ……𝑥𝑛 

is called the regression surface of the 1st type of the random variable 𝑿, on the 

random variables 𝑿𝟐, 𝑿𝟑, ……𝑿𝒏. 
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UNIT – III 

CHARACTEREISTICS FUNCTIONS 

 

3.1. Properties of characteristics functions. 

 Let X be a random variable and let F(𝑥) be its distributive function. 

Definition. The function 

𝜙(𝑡) = 𝐸(𝑒𝑖𝑡𝑋) 

Where t is a real numbers and i is the imaginary unit is called the characteristics function of a 

random variable X or of the distribution function 𝐹(𝑥). 

Definition. If X is of random variable of the discrete type with jump points 𝑥𝑘(𝑘 = 1,2,… )  

and 𝑃(𝑋 = 𝑥𝑘) = 𝑝𝑘 , the characteristic function of X has the form  

𝜙(𝑡) = 𝐸(𝑒𝑖𝑡𝑋) =∑𝑝𝑘𝑒
𝑖𝑡𝑥𝑘

𝑘

……… . (1) 

Since |𝑒𝑖𝑡𝑥𝑘| = 1 and ∑ 𝑝𝑘 = 1𝑘 , the series on the right hand side of (1) is absolutely and 

uniform convergent. Thus, the  characteristics function 𝜙(𝑡), as the sum of uniformly 

convergent series of continuous function,  is continuous for every real value of 𝑡. 

Thus 𝜙(𝑡) is continuous for every 𝑡. 

Problem 1. The  random variable X can take on the value 𝑥1 = −1 and 𝑥2 = 1 with 

probabilities 𝑃(𝑋 = −1) = 𝑃(𝑋 = +1) = 0.5. Find the characteristic function of this random 

variable. 

Solution. 

𝜙(𝑡) = ∑ 𝑝𝑘𝑒
𝑖𝑡𝑥𝑘

𝑘   

= 𝑃(𝑋 = −1)𝑒𝑖𝑡𝑥1 + 𝑃(𝑋 = 1)𝑒𝑖𝑡𝑥2  

= 0.5 𝑒−𝑖𝑡 + 0.5𝑒𝑖𝑡  
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= 0.5[cos 𝑡 − sin 𝑡 + cos 𝑡 + sin 𝑡 ]  

= 0.5(2 cos 𝑡)  

= cos 𝑡    

𝑖. 𝑒. , 𝜙(𝑡) = cos 𝑡 . 

 

Definition. If X is a random variable of the continuous type with density function 𝑓(𝑥), its 

characteristic  function is given by  

𝜙(𝑡) = 𝐸(𝑒𝑖𝑡𝑋) = ∫ 𝑓(𝑥)𝑒𝑖𝑡𝑥𝑑𝑥  … . . (1)
∞

−∞

 

Since ∫ 𝑓(𝑥)|𝑒𝑖𝑡𝑥| 𝑑𝑥 =
∞

−∞ ∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

−∞
. 

∴ the integral in equation (1) is absolutely and uniformly convergent. 

Hence 𝜙(𝑡) is a continuous function for every 𝑡. 

Problem 2. The density function 𝑓(𝑥) defined as 

𝑓(𝑥) = {

0         𝑖𝑓 𝑥 < 0        
1        𝑖𝑓 0 ≤ 𝑥 ≤ 1
0        𝑖𝑓 𝑥 > 1         

   

This distribution function is called uniform or rectangular. Find its characteristic function. 

Solution. 

𝜙(𝑡) =  ∫ 𝑓(𝑥)𝑒𝑖𝑡𝑥𝑑𝑥
∞

−∞
   

= ∫ 𝑒𝑖𝑡𝑥𝑑𝑥 
1

0
  

= (
𝑒𝑖𝑡𝑥

𝑖𝑡
)
0

1

  

=
𝑒𝑖𝑡−1

𝑖𝑡
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Properties of characteristic functions 

1) 𝜙(0) = 1. 

For,  

𝜙(𝑡) = 𝐸(𝑒𝑖𝑡𝑥)  

𝜙(0) = 𝐸(𝑒0 ) = 𝐸(1) = 1 . 

2) |𝜙(𝑡)| ≤ 1. 

𝐹𝑜𝑟, 

|𝜙(𝑡)| = |𝐸(𝑒𝑖𝑡𝑋) |  

= |∑ 𝑝𝑘𝑒
𝑖𝑡𝑋

𝑘 |  

≤ ∑ 𝑝𝑘|𝑒
𝑖𝑡𝑥𝑘|𝑘   

= 𝐸(|𝑒𝑖𝑡𝑥𝑘|)  

= 𝐸(1)  

= 1  

∴ |𝜙(𝑡)| ≤ 1. 

3) 𝜙(−𝑡) = 𝜙(𝑡)̅̅ ̅̅ ̅̅ . 

𝑷𝒓𝒐𝒐𝒇.  

LHS: 

𝜙(−𝑡) = 𝐸(𝑒𝑖𝑡𝑋)  

= 𝐸(cos 𝑡 𝑋 − 𝑖 sin 𝑡  𝑋 )  

= 𝐸(cos 𝑡  𝑋) − 𝑖 𝐸(sin 𝑡 𝑋) … . . (1)  

RHS: 

𝜙(𝑡)̅̅ ̅̅ ̅̅ = 𝐸(𝑒𝑖𝑡𝑋 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

= 𝐸(𝑐𝑜𝑠 𝑡 𝑋 + 𝑖 𝑠𝑖𝑛 𝑡 𝑋)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

= 𝐸(𝑐𝑜𝑠 𝑡  𝑋) + 𝑖 𝐸(𝑠𝑖𝑛 𝑡 𝑋) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ …… (2)  

Using (1) and (2), 

𝜙(−𝑡) = 𝜙(𝑡)̅̅ ̅̅ ̅̅    

Where  𝜙(𝑡)̅̅ ̅̅ ̅̅  denotes the complex number conjugate to 𝜙(𝑡). 

Remark: 

Every characteristic function satisfies the properties of the characteristic functions. But 

converse need not be true. 
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𝑖. 𝑒., every function 𝜙(𝑡) satisfying a properties is need not be a characteristic function of some 

random variable.  

 

Theorem 3.1. Let the function 𝜙(𝑡) defined for −∞ < 𝑡 < ∞ such that 𝜙(0) = 1. The 

function 𝜙(𝑡) is the characteristic function of some distribution function iff 

(i) 𝜙(𝑡) is continuous. 

(ii) For 𝑛 = 1,2,… and every real 𝑡1, 𝑡2, … . , 𝑡𝑛 and complex 𝑎1, 𝑎2, … , 𝑎𝑛 such that  

Σ𝑗,𝑘=1
𝑛 𝜙(𝑡𝑗 − 𝑡𝑘) 𝑎𝑗  𝑎𝑘̅̅ ̅ ≥ 0  

Proof. 

Let 𝜙(0) = 1 and |𝑒𝑖𝑡𝑥𝑘 | = 1  and ∑𝑘 𝑝𝑘 = 1. 

∴ 𝜙(𝑡) is continuous. 

For 𝑛 = 1,2,….and every real 𝑡1, 𝑡2, … . , 𝑡𝑛 and complex 𝑎1, 𝑎2, … , 𝑎𝑛. 

Then, Σ𝑗,𝑘=1
𝑛 𝜙(𝑡𝑗 − 𝑡𝑘)𝑎𝑗  𝑎𝑘̅̅ ̅ ≥ 0. 

∴ 𝜙(𝑡) is defined for  −∞ < 𝑡 < ∞ and 𝜙(0) = 1. 

∴ 𝜙 is a characteristic function.  

Hence proved. 

 

3.2. Characteristic Function and Moments 
 

Theorem 3.2. If the 𝑙𝑡ℎ moment 𝑚1of a random variable exists, it is expressed as 𝑚𝑙 =
𝜙(𝑙)(0)

𝑖𝑖
, 

where 𝜙𝑙(0) is the 𝑙𝑡ℎderivative of the characteristic function of this random variable at 𝑡 = 0. 

Proof. 

Consider the random variable X and suppose that its 𝑙𝑡ℎ moment 𝑚𝑙 = 𝐸(𝑋𝑙) exists. 

Suppose X is the random variable of the discrete type with  jump points 𝑥𝑘. 

The characteristic function of X is 𝜙(𝑡) = Σ𝑘 𝑝𝑘𝑒
𝑖𝑡𝑥𝑘 … . (1) 
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Differentiate (1)  with respect to ‘t’ for 𝑙 times we get, 

𝜙′(𝑡) = Σ𝑘 𝑝𝑘𝑒
𝑖𝑡𝑥𝑘(𝑖𝑡)  

𝜙′′(𝑡) = Σ𝑘 𝑝𝑘𝑒
𝑖𝑡𝑥𝑘(𝑖𝑡)2  

⋮  

𝜙𝑙(𝑡) = Σ𝑘 𝑝𝑘𝑒
𝑖𝑡𝑥𝑘(𝑖𝑡)𝑙 . 

∴ 𝜙𝑙(𝑡) = 𝐸(𝑖𝑙𝑋𝑙𝑒𝑖𝑡𝑋 )… . . . (2) (∵ 𝐸(𝑔(𝑥)) = Σ𝑘 𝑝𝑘𝑔(𝑥𝑘) ) 

Since 𝑚𝑙 = 𝐸(𝑋𝑙) is exists. 

Σ𝑘|𝑝𝑘𝑖
𝑙𝑥𝑘
𝑙 𝑒𝑖𝑡𝑋𝑘| = Σ𝑘|𝑝𝑘𝑥𝑙

𝑙| < ∞  

∴ RHS  of (2) exists. 

∴ 𝜙𝑙(𝑡) is exists. 

Suppose 𝑓(𝑥) is the density function of the random variable X of the continuous type. 

𝜙(𝑡) = 𝐸(𝑒𝑖𝑡𝑋) =\𝑙𝑖𝑚𝑖𝑡 ∫ 𝑓(𝑥)𝑒𝑖𝑡𝑥𝑑𝑥…… (3)
∞

∞

 

Differentiate (3) ′𝑙′ times with respect to 𝑡 we get, 

𝜙𝑙(𝑡) = ∫ 𝑓(𝑥)𝑖𝑙𝑐𝑙𝑒𝑖𝑡𝑥𝑑𝑥
∞

−∞

 

= 𝐸(𝑖𝑙𝑋𝑙𝑒𝑖𝑡𝑋) 

Since ∫ |𝑖𝑙𝑥𝑙𝑓(𝑥)𝑒𝑖𝑡𝑥|𝑑𝑥 = ∫ |𝑥𝑙𝑓(𝑥) |𝑑𝑥 = 𝛽𝑙
∞

−∞

∞

−∞
  

By assumption, the absolute moment 𝛽𝑙 is finite, 𝜙𝑙 is exists. 

∴ 𝜙(𝑙)(𝑡) = 𝐸(𝑖𝑙𝑋𝑙𝑒𝑖𝑡𝑋) 

Put 𝑡 = 0, 

𝜙𝑙(0) = 𝐸(𝑖𝑙𝑋𝑙𝑒0) = 𝐸(𝑖𝑙𝑋𝑙) = 𝑖𝑙𝐸(𝑋𝑙)𝑖𝑙𝑚𝑙  

∴ 𝑚𝑙 =
𝜙(𝑙)(0)

𝑖𝑙
    

Hence Proved. 
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Example 1. Suppose that the random variable X has  a Poisson distribution. i.e., it can taken 

on the values 𝑥𝑘 = 𝑘1, where k is any non-negative integer, and the probability function is 

given by the formula 

𝑃(𝑋 = 𝑘) =
𝜆𝑘

𝑘!
𝑒−𝜆, 

where 𝜆 is the positive constant. Find the characteristic function of X and moments. 

Solution. 

𝜙(𝑡) = Σ𝑘𝑝𝑘𝑒
𝑖𝑡𝑥𝑘  

= Σ𝑘=0
∞ [𝑒𝑖𝑡𝑘  

𝜆𝑘

𝑘! 
] 𝑒−𝜆   

𝑒−𝜆Σ𝑘=0
∞ [

(𝜆𝑒𝑖𝑡  )
𝑘

𝑘!
]  

= 𝑒−𝜆𝑒𝜆𝑒𝑖𝑡  

∴ 𝜙 (𝑡) = 𝑒𝜆(𝑒
𝑖𝑡−1)   

𝜙′(𝑡) = 𝑒−𝜆𝑒𝜆𝑒
𝑖𝑡 (𝜆𝑖𝑒𝑖𝑡)   

∴ 𝜙′(𝑡) = 𝜆𝑖𝑒𝑖𝑡𝑒𝜆(𝑒
𝑖𝑡−1)   

𝜙′′(𝑡) = 𝜆𝑖𝑒𝑖𝑡(𝑖)𝑒𝜆(𝑒
𝑖𝑡−1) + 𝜆𝑖𝑒𝑖𝑡 (𝜆𝑖𝑒𝑖𝑡𝑒𝜆(𝑒

𝑖𝑡−1 )  )   

= −𝜆𝑒𝑖𝑡𝑒𝜆(𝑒
𝑖𝑡−1 )(𝜆𝑒𝑖𝑡 + 1)  

We know that , 𝑚𝑙 =
𝜙(𝑙)(0)

(𝑖)𝑙 
 

∴ 𝑚1 =
𝜙′(0)

(𝑖)′
  

=
𝜆𝑖𝑒𝑜𝑒𝜆(1−1)

𝑖
  

=
𝜆𝑖

𝑖
= 𝜆   

𝑖. 𝑒. ,𝑚1 = 𝜆  

𝑚2 =
𝜙′′(0)

𝑖2
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=
−𝜆𝑒0𝑒𝜆(1−1)(𝜆𝑒

0+1 )  

−1
  

=
−𝜆(𝜆+1) 

−1
  

𝑖. 𝑒. ,𝑚2 = 𝜆(𝜆 + 1)  

Central moment 𝜇1 = 0. 

The central moment of the second order is  

𝜎2 = 𝜇2 = 𝑚2 −𝑚1
2 = 𝜆(𝜆 + 1)2 − 𝜆2  = 𝜆2 + 𝜆 − 𝜆2 = 𝜆 

Example 2. Find the characteristic function and moment of the normal distribution. 

Solution. 

Let X be the normal distribution and the density function be 𝑓(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2 . 

𝜙(𝑡) = ∫ 𝑒𝑖𝑡𝑥𝑓(𝑥)𝑑𝑥
∞

−∞
    

= ∫ 𝑒𝑖𝑡𝑥
1

√2𝜋
𝑒−

𝑥2

2 𝑑𝑥
∞

−∞
    

=
1

√2𝜋
∫ 𝑒𝑖𝑡𝑥𝑒−

𝑥2

2 𝑑𝑥
∞

−∞
  

=
1

√2𝜋
∫ 𝑒−

(𝑥−𝑖𝑡)2

2  𝑒−
𝑡2

2 𝑑𝑥
∞

−∞
  

= 𝑒−
𝑡2

2 (
1

√2𝜋
∫ 𝑒−

(𝑥−𝑖𝑡)2

2  𝑑𝑥
∞

−∞
)  

∴ 𝜙(𝑡) = 𝑒−
𝑡2

2   

𝜙′(𝑡) = −𝑡𝑒−
𝑡2

2   

𝜙′′(𝑡) = 𝑒−
𝑡2

2 (𝑡2 − 1)  

We know that 𝑚𝑙 =
𝜙(𝑙) (0)

(𝑖)𝑙
 

∴  𝑚1 =
𝜙′ (0)

(𝑖)1
= 0  
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𝑚2 =
𝜙′′ (0)

(𝑖)2
=

𝑒0(0−1)

−1
=

−1

−1
= 1  

 Clearly all odd order moments are zero and that the even order moments are expressed by the 

formula 

𝑚2𝑙 = 1.3.5… (2𝑙 − 1) 

Characteristic function of linear transformation 

1. If the random variable is translated by a constant n, then characteristic function is 

multiplied factor 𝑒𝑖𝑡𝑏. Let 𝑌 = 𝑋 + 𝑏, where X is random variable and characteristic 

function is 𝜙(𝑡). 

Let 𝜙1(𝑡) be the characteristic function of Y. 

𝜙1(𝑡) = 𝐸(𝑒
𝑖𝑡𝑌  )                  

= 𝐸(𝑒𝑖𝑡(𝑋+𝑏)) 

= 𝐸(𝑒𝑖𝑡𝑋𝑒𝑖𝑡𝑏)  

= 𝑒𝑖𝑡𝑏𝐸(𝑒𝑖𝑡𝑋) 

∴ 𝜙1(𝑡) = 𝑒
𝑖𝑡𝑏𝜙(𝑡).                      

2. The characteristic function of a random variable 𝑎𝑋 equals the characteristic function 

of the random variable X at the point 𝑎𝑡. 

Let 𝑌 = 𝑎𝑋, where X is a random variable and the characteristic function is 𝜙(𝑡).  

𝜙1(𝑡) = 𝐸(𝑒𝑖𝑡𝑌) = 𝐸(𝑒𝑖𝑡𝑎𝑋) = 𝜙(𝑎𝑡) 

∴ 𝜙1(𝑡)  = 𝜙(𝑎𝑡)                                                

In particular, if 𝑎 = −1, we obtain 

𝜙1(𝑡) = 𝜙(−𝑡) = 𝜙(𝑡)̅̅ ̅̅ ̅̅  

∴ 𝜙1(𝑡)  = 𝜙(𝑡)̅̅ ̅̅ ̅̅  

3. Find the characteristic function of the random variable X and Y by 𝜙(𝑡) and 𝜙1(𝑡) 

respectively, we obtain 

𝜙1(𝑡) = 𝐸(𝑒𝑖𝑡𝑌) = 𝐸(𝑒𝑖𝑡(𝑎𝑋+𝑏)) = 𝐸(𝑒𝑖𝑡𝑋𝑒𝑖𝑡𝑏) = 𝑒𝑖𝑡𝑏𝜙(𝑎𝑡) 

∴ 𝜙1(𝑡) = 𝑒
𝑖𝑡𝑏𝜙(𝑎𝑡)                                                                                    

Note:  

Suppose 𝑌 =
𝑋−𝑚1

𝜎
 

Where 𝑚1 and 𝜎  denote the expected value and standard deviation of X. 
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Here, 𝑎 =
1

𝜎
, 𝑏 =

−𝑚1

𝜎
 

𝜙1(𝑡) = 𝑒𝑖𝑡𝑏𝜙(𝑎𝑡)  

= 𝑒
𝑖𝑡𝑚1
𝜎 𝜙(

𝑡

𝜎
)    

3.3.Semi-Invariants 
 

Definition. Let 𝜓(𝑡) = log 𝜙(𝑡), where 𝜙(𝑡) is the characteristic function of the random 

variable under consideration. 

Let us expand the function 𝜙(𝑡) in a power series function in a neighbourhood of 𝑡 = 0,  

𝜙(𝑡) = 1 + Σ𝑠=1
∞  

𝑚𝑠

𝑠!
(𝑖𝑡)𝑠……(1) 

Let z denote the series of RHS of (1),  

𝜓(𝑡) = log𝜙(𝑡) = log(1 + 𝑧) 

Let us expand the function 𝜓(𝑡) into a power series, 

𝜓(𝑡) =
𝑧

1
−
𝑧2

2
+
𝑧3

3
−⋯    

= Σ𝑠=1
∞  

𝑘𝑠
𝑠!
(𝑖𝑡)𝑠 

log 𝜙(𝑡) = Σ𝑠=1
∞  

𝑘𝑠
𝑠!
(𝑖𝑡)𝑠……(2) 

From (1) and (2), 

1 + Σ𝑠=1
∞  

𝑚𝑠

𝑠!
(𝑖𝑡)𝑠 = 𝑒

[Σ𝑠=1
∞  

𝑘𝑠
𝑠!
(𝑖𝑡)𝑠]                

                                                                                          

∴ 𝜙(𝑡) = 1 + Σ𝑠=1
∞  

𝑘𝑠
𝑠!
(𝑖𝑡)𝑠 +

1

2!
[Σ𝑠=1
∞  

𝑘𝑠
𝑠!
(𝑖𝑡)𝑠]

2

+
1

3!
[Σ𝑠=1
∞  

𝑘𝑠
𝑠!
(𝑖𝑡)𝑠]

3

+⋯ 

         …… . (∗) 

Definition. Let 𝜓(𝑡) = 1 + Σ𝑠=1
∞  

𝑘𝑠

𝑠!
(𝑖𝑡)𝑠……(1) 

The coefficient 𝑘𝑠 in (1) are called semi-invariants. 
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Result. Derive the semi-invariants in terms of the moments (or) the moments in terms of the 

semi-invariants. 

Proof. 

We know that, 𝜙(𝑡) = 1 + Σ𝑠=1
∞  

𝑚𝑠

𝑠!
(𝑖𝑡)𝑠……(1) 

𝑖. 𝑒. , 𝜙(𝑡) = 1 + Σ𝑠=1
∞  

𝑘𝑠
𝑠!
(𝑖𝑡)𝑠 +

1

2!
[Σ𝑠=1
∞  

𝑘𝑠
𝑠!
(𝑖𝑡)𝑠]

2

+
1

3!
[Σ𝑠=1
∞  

𝑘𝑠
𝑠!
(𝑖𝑡)𝑠]

3

+⋯(2) 

Compare the (𝑖𝑡)𝑠 for particular values of 𝑠 in equation (2) we obtain, 

𝑘1 = 𝑚1                                                                      

𝑘2 = 𝑚2 +𝑚1
2 = 𝜎2                                                

𝑘3 = 𝑚3 − 3𝑚1𝑚2 + 2𝑚1
3                                    

𝑘4 = 𝑚4 − 3𝑚2
2 − 4𝑚1𝑚3 + 12𝑚1

2𝑚2 − 6𝑚1
4

…… }
 
 

 
 

……(3) 

and 

     

𝑚1 = 𝑘1                                                         

𝑚2 = 𝑘2 + 𝑘1
2                                               

𝑚3 = 𝑘3 + 3𝑘1𝑘2 + 2𝑘1
3                           

𝑚4 = 𝑘4 + 3𝑘2
2 + 4𝑘1𝑘3 + 6𝑘1

2𝑘2 + 𝑘1
2

…… }
 
 

 
 

……(4) 

The semi-invariants can also be in terms of the central moments. 

𝑘1 = 𝑚1                                                                            

𝑘2 = 𝜇2 = 𝜎2                                                                 

𝑘3 = 𝜇
3                                                                            

𝑘4 = 𝜇4 − 3𝜇2
2                                                                

……                                                                           

 

Note.  

1. From (3) and (4), if the moments of the 𝑙𝑡ℎ order exists, all the semi-invariants of order 

not greater than 𝑙 also exist. 
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2. Let 𝑌 = 𝑋 + 𝑏. Let 𝜙(𝑡) and 𝜙1(𝑡) be the characteristic function of the random 

variables 𝑋 and 𝑌 respectively, we have 

log 𝜙1(𝑡) = 𝑏𝑖𝑡 + log 𝜙(𝑡)  

Thus the translation changes only the coefficient of the terms with 𝑖𝑡 to the first power 

in the expansion (*).Hence it changes only the semi-invariant of the first order. 

Example 1. Compute the semi-invariants of the Poisson distribution and moments. 

Solution. 

The characteristic function of the Poisson distribution is 

𝜙(𝑡) = 𝑒
𝜆(𝑒𝑖𝑡−1)

  

𝜓(𝑡) = log 𝜙(𝑡)  

= log 𝑒𝜆(𝑒
𝑖𝑡−1)  

= 𝜆(𝑒𝑖𝑡 − 1)  

= 𝜆 (Σ𝑘=0
∞ (𝑖𝑡)𝑘

𝑘!
− 1 )  

= 𝜆 (1 + Σ𝑘=1
∞ (𝑖𝑡)𝑘

𝑘!
− 1 )  

𝑖. 𝑒. , 𝜓(𝑡) = 𝜆Σ𝑘=1
∞ (𝑖𝑡)𝑘

𝑘!
  

We know that 𝜓(𝑡) = Σ𝑠=1
∞ 𝑘𝑠

𝑠!
(𝑖𝑡)s  

∴ k𝑘 = λ (k = 1,2, … )    …..(1) 

Using the formulas for the relations between semi-invariants and moments we can obtain from 

formula (1) the moments of arbitrary order of the Poisson distribution are:  

𝑚1 = 𝑘1 = 𝜆                                                  

𝑚2 = 𝑘2 + 𝑘1
2 = 𝜆 + 𝜆2 = 𝜆(1 + 𝜆)       

𝑚3 = 𝑘3 + 3𝑘1𝑘2 + 𝑘1
3 = 𝜆 + 3𝜆2 + 𝜆3 
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3.4. The Characteristic function of the sum of independent random 

variables 
 

Let X and Y be two independent random variable. We have 𝑒𝑖𝑡𝑋 and 𝑒𝑖𝑡𝑌 are independent. 

Theorem 3.4. The characteristic function of the sum of an arbitrary finite number of 

independent random variables equals the product of their characteristic functions. 

Proof. 

We shall find the characteristic function of the sum 𝑍 = 𝑋 + 𝑌. 

Let 𝜙(𝑡), 𝜙1(𝑡) and 𝜙2(𝑡) be denote the characteristic function of the random variables Z, X 

and Y. We have, 

𝜙(𝑡) = 𝐸(𝑒𝑖𝑡𝑍) = 𝐸(𝑒𝑖𝑡(𝑋+𝑌)) = 𝐸(𝑒𝑖𝑡𝑋. 𝑒𝑖𝑡𝑌) 

= 𝐸(𝑒𝑖𝑡𝑋). 𝐸(𝑒𝑖𝑡𝑌) = 𝜙1(𝑡)𝜙2(𝑡)    

Corollary. The characteristic function of the sum of n independent random variables equals 

the product of their characteristic functions. 

Proof. 

We prove the result the induction on number of random variables. 

Let 𝑛 = 2 

Let 𝑋1 and 𝑋2 be the two independent random variables, then by the above the theorem we 

have 

𝜙(𝑡) = 𝜙1(𝑡)𝜙1(𝑡)  

Assume that  𝑋1, 𝑋2, … , 𝑋𝑛−1 are the independent random variables for which characteristic 

functions 𝜙1(𝑡), 𝜙2(𝑡), … , 𝜙𝑛−1(𝑡). 

Let 𝑍 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛−1 and 𝜙(𝑡) be the characteristic function of Z. 

Assume that 𝜙(𝑡) =  𝜙1(𝑡)𝜙2(𝑡)…𝜙𝑛(𝑡) 

Let  𝑍 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 and 𝜙(𝑡), 𝜙1(𝑡), 𝜙2(𝑡), … , 𝜙𝑛−1(𝑡) denote the characteristic 

function of 𝑍, 𝑋1, 𝑋2, … , 𝑋𝑛. 
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𝜙(𝑡) = 𝐸(𝑒𝑖𝑡𝑍) = 𝐸(𝑒𝑖𝑡(𝑋1+𝑋2+⋯+𝑋𝑛)) = 𝐸(𝑒𝑖𝑡𝑋1 . 𝑒𝑖𝑡𝑋2 …𝑒𝑖𝑡𝑋𝑛) 

𝑖. 𝑒. , 𝜙(𝑡) = 𝜙1(𝑡) + 𝜙2(𝑡) + ⋯𝜙𝑛(𝑡).                                                                 

 

Example 1. Suppose two independent random variables 𝑋1and 𝑋2 have Poisson distribution 

𝑃(𝑋1 = 𝑟) =
𝜆1
𝑟

𝑟!
𝑒−𝜆1 , 𝑃(𝑋2 = 𝑟) =

𝜆2
𝑟

𝑟!
𝑒−𝜆2(𝑟 = 0,1,2, … ). Consider the random variable 𝑍 =

𝑋1 − 𝑋2.Determine the characteristic function and semi-invariants of Z. 

Solution. 

Let 𝑋1and 𝑋2  be the two independent random variables having Poisson distribution. 

The characteristic function of 𝑋1and 𝑋2 are 

𝜙1(𝑡) = 𝑒𝜆1(𝑒
𝑖𝑡−1) and 𝜙2(𝑡) = 𝑒𝜆2(𝑒

𝑖𝑡−1) 

 

The characteristic function of −𝑋2 is 

𝜙1(−𝑡) = 𝑒
𝜆2(𝑒

−𝑖𝑡−1) 

Since 𝑋1 and −𝑋2 are independent, we obtain the characteristic function of Z  

𝜙(𝑡) = 𝜙1(𝑡)𝜙2(−𝑡)  

= 𝑒𝜆1(𝑒
𝑖𝑡−1)𝑒𝜆2(𝑒

−𝑖𝑡−1)  

= 𝑒𝜆1(𝑒
𝑖𝑡−1)+𝜆2(𝑒

−𝑖𝑡−1)  

= 𝑒
𝜆1(1+

(𝑖𝑡)

1!
+
(𝑖𝑡)2

2!
+⋯−1)+𝜆2(1−

(𝑖𝑡)

1!
+
(𝑖𝑡)2

2!
−⋯−1)

      

= 𝑒
𝜆1(

(𝑖𝑡)

1!
+
(𝑖𝑡)2

2!
+⋯)+𝜆2(−

(𝑖𝑡)

1!
+
(𝑖𝑡)2

2!
−⋯)

   

= 𝑒
(𝜆1−𝜆2)

(𝑖𝑡)

1!
+(𝜆1+𝜆2)

(𝑖𝑡)2

2!
+(𝜆1−𝜆2)

(𝑖𝑡)3

3!
+⋯

  

∴ 𝜙(𝑡) = 𝑒
(𝜆1−𝜆2)

(𝑖𝑡)

1!
+(𝜆1+𝜆2)

(𝑖𝑡)2

2!
+(𝜆1−𝜆2)

(𝑖𝑡)3

3!
+⋯

 , 

𝜓(𝑡) = log𝜙(𝑡) = (𝜆1 − 𝜆2)
(𝑖𝑡)

1!
+ (𝜆1 + 𝜆2)

(𝑖𝑡)2

2!
+ (𝜆1 − 𝜆2)

(𝑖𝑡)3

3!
+ ⋯ 
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All the semi-invariants of odd order of Z equal 𝜆1 − 𝜆2 and all the semi-invariants of even 

order equal 𝜆1 + 𝜆2 

𝑖. 𝑒. , 𝑘1 = 𝜆1 − 𝜆2, 𝑘3 = 𝜆1 − 𝜆2, … 

The expected value and the variance of Z are 

𝑚1 = 𝑘1 = 𝜆1 − 𝜆2, 𝜎
2 = 𝑘2 = 𝜆1 + 𝜆2 

Note. The converse of the above theorem is not true. 

i.e., the characteristic function of the sum of dependent random variables may equal the product 

of their characteristic functions. 

 

3.5.Determination of the distribution function by the characteristic 

function 
 

Theorem 3.5.  

Let 𝐹(𝑥) and 𝜙(𝑡) denote respectively the distribution function and the characteristic 

function of the random variable X. If 𝑎 + ℎ  and 𝑎 − ℎ(ℎ > 0) are continuity points of the 

distribution function 𝐹(𝑥) , 

𝐹(𝑎 + ℎ) − 𝐹(𝑎 − ℎ) = lim
𝑇→∞

 
1

𝜋
∫

sin ℎ𝑡

𝑡
𝑒−𝑖𝑡𝑎𝜙(𝑡)𝑑𝑡

𝑇

−𝑇

.  

Proof. 

Let X be a random variable of the continuous type with the density function 𝑓(𝑥) 

Let 𝐽 =
1

𝜋
∫

sinℎ𝑡

𝑡
𝑒−𝑖𝑡𝑎𝜙(𝑡)𝑑𝑡

𝑇

−𝑇
……(1) 

From the definition of the characteristic function we obtain 

 𝐽 =
1

𝜋
∫

sinℎ𝑡

𝑡
𝑒−𝑖𝑡𝑎[∫ 𝑒𝑖𝑡𝑥𝑓(𝑥)𝑑𝑥

+∞

−∞
]𝑑𝑡

𝑇

−𝑇
 

=
1

𝜋
∫ [∫

sinℎ𝑡

𝑡
𝑒−𝑖𝑡𝑎𝑒𝑖𝑡𝑥𝑓(𝑥)𝑑𝑥

+∞

−∞
] 𝑑𝑡

𝑇

−𝑇
  

=
1

𝜋
∫ [∫

sinℎ𝑡

𝑡
𝑒𝑖𝑡(𝑥−𝑎)𝑓(𝑥)𝑑𝑥

+∞

−∞
] 𝑑𝑡

𝑇

−𝑇
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We notice that we can interchange the order of integration since the limits of integration with 

respect to 𝑡 are finite and the integral is absolutely convergent with respect to 𝑥. Thus 

∫ |
sin ℎ𝑡

𝑡
𝑒𝑖𝑡(𝑥−𝑎)| 𝑓(𝑥)𝑑𝑥

+∞

−∞

= ∫ |
sin ℎ𝑡

𝑡
| 𝑓(𝑥)𝑑𝑥 ≤ ℎ∫ 𝑓(𝑥)𝑑𝑥

+∞

−∞

+∞

−∞

= ℎ 

We obtain 

𝐽 =
1

𝜋
∫ [∫

sinℎ𝑡

𝑡
𝑒𝑖𝑡(𝑥−𝑎)𝑓(𝑥)𝑑𝑡

𝑇

−𝑇
] 𝑑𝑥

∞

−∞
  

=
1

𝜋
∫ [∫

sinℎ𝑡

𝑡
{cos(𝑥 − 𝑎)𝑡 + 𝑖 sin(𝑥 − 𝑎 )𝑡}𝑓(𝑥)𝑑𝑡

𝑇

−𝑇
] 𝑑𝑥

∞

−∞
  

=
2

𝜋
∫ [∫

sinℎ𝑡

𝑡
cos(𝑥 − 𝑎)𝑡 𝑓(𝑥)𝑑𝑡

𝑇

0
] 𝑑𝑥

∞

−∞
  

By the formula 

sin 𝐴 cos 𝐵 =
1

2
[sin(𝐴 + 𝐵) + sin(𝐴 − 𝐵)] 

And the substitution 𝐴 = ℎ𝑡, 𝐵 = 𝑥𝑡 − 𝑎𝑡, we obtain 

𝐽 = ∫ [
1

𝜋
∫

sin(𝑥−𝑎+ℎ)𝑡

𝑡
𝑑𝑡

𝑇

0
−

1

𝜋
∫

sin(𝑥−𝑎−ℎ)𝑡

𝑡
𝑑𝑡

𝑇

0
] 𝑓(𝑥) 𝑑𝑥

∞

−∞
  

= ∫ 𝑔(𝑥, 𝑇)𝑓(𝑥) 𝑑𝑥
∞

−∞
…… (2)  

Where 𝑔(𝑥, 𝑇) =
1

𝜋
∫

sin(𝑥−𝑎+ℎ)𝑡

𝑡
𝑑𝑡

𝑇

0
−

1

𝜋
∫

sin(𝑥−𝑎−ℎ)𝑡

𝑡
𝑑𝑡

𝑇

0
 

It is know from mathematical analysis that the integral ∫ (sin
𝑥

𝑥
)𝑑𝑥

𝑇

0
 is bounded for all 𝑇 > 0 

and converges to 
𝜋

2
 as 𝑇 → +∞. It follows that the expression |𝑔(𝑥, 𝑇)| is bounded and 

lim
 𝑇→+∞

1

𝜋
∫

sin𝛼𝑡

𝑡
𝑑𝑡

𝑇

0
= {

1

2
    𝑓𝑜𝑟 𝛼 > 0

−
1

2
 𝑓𝑜𝑟 𝛼 < 0

 

Here the convergence is uniform with respect to 𝛼 where |𝛼| = |𝑥 − 𝑎 ± ℎ| > 𝛿 > 0. 

From this fact we obtain 
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 lim
𝑇→+∞

𝑔(𝑥, 𝑇) =

{
 
 

 
 
0 𝑓𝑜𝑟 𝑥 < 𝑎 − ℎ,                 
1

2
 𝑓𝑜𝑟 𝑥 = 𝑎 − ℎ,                 

1 𝑓𝑜𝑟 𝑎 − ℎ < 𝑥 < 𝑎 + ℎ,
1

2
 𝑓𝑜𝑟 𝑥 = 𝑎 + ℎ,                 

0 𝑓𝑜𝑟 𝑥 > 𝑎 + ℎ                   

 

Taking limit on both sides of (2) we obtain 

lim
𝑇→∞

𝐽 =∫ lim
𝑇→∞

𝑔(𝑥, 𝑇)𝑓(𝑥) 𝑑𝑥
∞

−∞
  

           = ∫ 𝑓(𝑥)𝑑𝑥
+ℎ𝑎

𝑎−ℎ
  

           = 𝐹(𝑎 + ℎ) − 𝐹(𝑎 − ℎ)… . . (4)   

From (1) and (4), 

𝐹(𝑎 + ℎ) − 𝐹(𝑎 − ℎ) = lim
𝑇→∞

1

𝜋
 ∫

sinℎ𝑡

𝑡

𝑇

−𝑇
𝑒𝑖𝑡𝑎𝜙(𝑡)𝑑𝑡. 

Hence proved. 

 

Remark. If the characteristic function 𝜙(𝑡) is absolutely over the interval (−∞,∞), then the 

corresponding density function 𝑓(𝑥) can be determined by 𝜙(𝑡). In fact, from the absolutely 

inerrability of the function 𝜙(𝑡) it follows that the improper integral in Theorem 3.5.1 exists.  

Dividing both sides of equation in Theorem 3.5.1 by 2ℎ, we have 

𝐹(𝑥 + ℎ) − 𝐹(𝑥 − ℎ)

2ℎ
=  

1

2𝜋
∫ 𝑒−𝑖𝑡𝑥𝜙(𝑡)𝑑𝑡
∞

−∞

. 

Since the RHS of this equation I a continuous function of 𝑥, we obtain 

𝐹′(𝑥) = 𝑓(𝑥) =
1

2𝜋
∫ 𝑒−𝑖𝑡𝑥𝜙(𝑡)𝑑𝑡
∞

−∞

 

From the absolute and uniform convergence of the last integral it follows that the density 𝐹′(𝑥) 

exists and is c continuous function. 

 

Example 1. The characteristic function of the random variable X is given by the formula 

𝜙(𝑡) = 𝑒−
𝑡2

2 . Find the density function of this random variable. 
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Solution. 

We have 𝑓(𝑥) =
1

2𝜋
∫ 𝑒−𝑖𝑡𝑥𝜙(𝑡)𝑑𝑡
∞

−∞
 

=
1

2𝜋
∫ 𝑒−𝑖𝑡𝑥𝑒−

𝑡2

2 𝑑𝑡
∞

−∞
  

=
1

2𝜋
∫ 𝑒−

(𝑡+𝑖𝑥)2

2 𝑒
(𝑖𝑥)2

2 𝑑𝑡
∞

−∞
  

=
1

√2𝜋
𝑒
−𝑥2

2
1

√2𝜋
∫ 𝑒−

(𝑡+𝑖𝑥)2

2 𝑑𝑡
∞

−∞
  

=
1

√2𝜋
𝑒
−𝑥2

2 (1)  

i.e., 𝑓(𝑥) =
1

√2𝜋
𝑒
−𝑥2

2 . 

 

Example. The joint distribution of the random variable (𝑋, 𝑌)is given by the density function 

𝑓(𝑥, 𝑦) = {
1

4
(1 + 𝑥𝑦(𝑥2 − 𝑦2)) 𝑓𝑜𝑟 |𝑥| ≤ 1 𝑓𝑜𝑟 |𝑥| ≤ 1 𝑎𝑛𝑑 |𝑦| ≤ 1

 0                                 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑝𝑜𝑖𝑛𝑡𝑠                          
    

Solution. 

𝑓1(𝑥) = ∫ 𝑓(𝑥, 𝑦)
1

−1
𝑑𝑦   

= ∫
1

4
(1 + 𝑥𝑦(𝑥2 − 𝑦2))

1

−1
𝑑𝑦  

=
1

4
[∫ 𝑑𝑦 + ∫ 𝑥3𝑦𝑑𝑦 + ∫ 𝑥𝑦3𝑑𝑦

1

−1

1

−1

1

−1
]  

=
1

4
[(𝑦)−1

1 + (
𝑥3𝑦2

2
)
−1

1

+ (
𝑥𝑦4

4
)
−1

1

]  

=
1

4
[(1 + 1) + (

𝑥3(1−1)

2
) +

𝑥(1−1)

4
]  

=
1

4
× 2 =

1

2
  

𝑖. 𝑒. , 𝑓1(𝑥) =
1

2
   

𝑓2(𝑥) = ∫ 𝑓(𝑥, 𝑦)
1

−1
𝑑𝑦   
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= ∫
1

4
(1 + 𝑥3𝑦 + 𝑥𝑦3)

1

−1
𝑑𝑥  

 =
1

4
[𝑥 +

𝑥4𝑦

4
+
𝑥2𝑦

2
]
−1

1

 

=
1

4
[(1 +

𝑦

4
+

𝑦3

2
) − (−1 +

𝑦

4
+
𝑦3

2
)]  

=
1

4
(1 + 1) =

1

2
  

𝑖. 𝑒. , 𝑓2(𝑥) =
1

2
  

 

Discrete Type. 

 If the random variable X is of the discrete type, then its probability function obtained 

from the characteristic function 𝑝𝑘 =
1

2𝜋
∫ 𝑒−𝑖𝑡𝑘
𝜋

−𝜋
𝜙(𝑡)𝑑𝑡. 

 

Example. Find the density function  of the random variable whose characteristic function is 

𝜙1(𝑡) = {
1 − |𝑡|  𝑓𝑜𝑟 |𝑡| ≤ 1

       0       𝑓𝑜𝑟 |𝑡| > 1 
  . 

Solution. 

𝑓(𝑥) =
1

2𝜋
∫ 𝑒−𝑖𝑡𝑥𝜙(𝑡)𝑑𝑡
∞

−∞
  

=
1

2𝜋
∫ 𝑒−𝑖𝑡𝑥(1 − |𝑡|)𝑑𝑡
1

−1
  

 

  

=
1

2𝜋
[∫ 𝑒−𝑖𝑡𝑥(1 + 𝑡)𝑑𝑡
0

−1
+ ∫ 𝑒−𝑖𝑡𝑥(1 − 𝑡)𝑑𝑡

1

0
]…… (1)  

Now, 

 ∫ 𝑒−𝑖𝑡𝑥(1 + 𝑡)𝑑𝑡
0

−1
= [(1 + 𝑡)

𝑒−𝑖𝑡𝑥

−𝑖𝑥
 ]
−1

0

− ∫
𝑒−𝑖𝑡𝑥

−𝑖𝑥

0

−1
𝑑𝑡  

                                   = [
−1

𝑖𝑥
+ 0] +

1

𝑖𝑥
(
𝑒−𝑖𝑡𝑥

−𝑖𝑥
)
−1

0
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                                   =
−1

𝑖𝑥
+

1

𝑖𝑥
(−

1

𝑖𝑥
+
𝑒𝑖𝑥

𝑖𝑥
)  

                                   =
−1

𝑖𝑥
−

1

(𝑖𝑥)2
(1 − 𝑒𝑖𝑥)…… (2)  

∫ 𝑒−𝑖𝑡𝑥(1 − 𝑡)𝑑𝑡
1

0
= [(1 − 𝑡)

𝑒−𝑖𝑡𝑥

−𝑖𝑥
 ]
0

1

− ∫
𝑒−𝑖𝑡𝑥

−𝑖𝑥

1

0
𝑑𝑡  

                             = [
𝑒−𝑖𝑡𝑥 

−𝑖𝑥
(1 − 𝑡)] −

1

−𝑖𝑥
(
𝑒−𝑖𝑡𝑥

−𝑖𝑥
)
0

1

  

                                 =
1

𝑖𝑥
+

1

(𝑖𝑥)2
(𝑒−𝑖𝑥 − 1)…… (3)  

Substitute equations (2) and (3) in equation (1), 

𝑓(𝑥) =
1

2𝜋
[−

1

𝑖𝑥
−

1

(𝑖𝑥)2
(1 − 𝑒𝑖𝑥) +

1

𝑖𝑥
+

1

(𝑖𝑥)2
(𝑒−𝑖𝑥 − 1)]  

          =
1

2𝜋
[
1

𝑥2
(1 − 𝑒𝑖𝑥) −

1

𝑥2
(𝑒−𝑖𝑥 − 1)]   

          =
1

2𝜋𝑥2
[1 − 𝑒𝑖𝑥 − 𝑒−𝑖𝑥 + 1]  

          =
1

2𝜋𝑥2
[2 − (𝑒𝑖𝑥 + 𝑒−𝑖𝑥)]  

          =
1

𝜋𝑥2
[1 −

(𝑒𝑖𝑥+𝑒−𝑖𝑥)

2
]  

          =
1

𝜋𝑥2
[1 − cos 𝑥]  

∴ 𝑓(𝑥) =
1

𝜋𝑥2
[1 − cos 𝑥]  

 

3.6. Characteristic function of multi-dimensional random vectors  
  

Let (𝑋, 𝑌) be a two-dimensional random vectors and let 𝐹(𝑥, 𝑦) be its distribution function. 

Let 𝑡 and 𝑎 be two arbitrary real numbers. The characteristics function of the random variable 

(𝑋, 𝑌) or of the distribution function 𝐹(𝑥, 𝑦) is defined by the formula 𝜙(𝑡, 𝑢) = 𝐸[𝑒𝐼(𝑡𝑋+𝑢𝑌) ]. 

 

Example 1.  The two-dimensional random variable can take on four pairs of values: 

(1, 1), (1, −1), (−1, 1) and (−1,−1) with the probabilities 
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𝑃(𝑋 = 1, 𝑌 = 1) =
1

3
, 𝑃(𝑋 = 1, 𝑌 = −1) =

1

3
, 

𝑃(𝑋 = −1, 𝑌 = 1) =
1

6
, 𝑃(𝑋 = −1, 𝑌 = −1) =

1

6
 

Find the characteristic function. 

Solution. 

Clearly X and Y are independent. 

The characteristic function of the random variable (𝑋, 𝑌) is 

𝜙(𝑡, 𝑢) = 𝐸[𝑒𝑖(𝑡𝑋+𝑢𝑌)]  

              = 𝑒𝑖(𝑡+𝑢). 𝑃11 + 𝑒
𝑖(𝑡−𝑢). 𝑃1(−1) + 𝑒

𝑖(−𝑡+𝑢). 𝑃(−1)1 + 𝑒
𝑖(−𝑡−𝑢). 𝑃(−1)(−1)  

              = 𝑒𝑖(𝑡+𝑢).
1

3
+ 𝑒𝑖(𝑡−𝑢).

1

3
+ 𝑒𝑖(−𝑡+𝑢).

1

6
+ 𝑒𝑖(−𝑡−𝑢).

1

6
   

              =
1

3
𝑒𝑖𝑡𝑒𝑖𝑢 +

1

3
𝑒𝑖𝑡𝑒−𝑖𝑢 +

1

6
𝑒−𝑖𝑡𝑒𝑖𝑢 +

1

6
𝑒−𝑖𝑡𝑒−𝑖𝑢  

              =
1

3
𝑒𝑖𝑡(𝑒𝑖𝑢 + 𝑒−𝑖𝑢) +

1

6
𝑒−𝑖𝑡(𝑒𝑖𝑢 + 𝑒−𝑖𝑢)  

              = (𝑒𝑖𝑢 + 𝑒−𝑖𝑢) (
1

3
𝑒𝑖𝑡 +

1

6
𝑒−𝑖𝑡)  

              = (cos 𝑢 + 𝑖𝑠𝑖𝑛𝑢 + 𝑐𝑜𝑠𝑢 − 𝑖𝑠𝑖𝑛𝑢) (
2𝑒𝑖𝑡+𝑒−𝑖𝑡 

6
)  

            =
1

6
× 2 cos 𝑢 (2 𝑐𝑜𝑠𝑡 + 2𝑖𝑠𝑖𝑛𝑡 + 𝑐𝑜𝑠𝑡 − 𝑖𝑠𝑖𝑛𝑡)  

𝜙(𝑡)   =
1

3
cos 𝑢(3 cos 𝑡  𝑡) + 𝑖𝑠𝑖𝑛𝑡 . 

 

Properties of characteristic functions of multi-dimensional random variables: 

1. 𝜙(0,0) = 𝐸(𝑒𝑖(𝑜𝑋+0𝑌)) = 1. 

2. |𝜙(𝑡, 𝑢)| = |𝐸(𝑒𝑖(𝑡𝑋+𝑡𝑌))| ≤ 𝐸(|𝑒𝑖(𝑡𝑋+𝑢𝑌)|) = 1  

∴ |𝜙(𝑡, 𝑢)| ≤ 1  

3. 𝜙(−𝑡,−𝑢) = 𝜙(𝑡, 𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅. 

𝐹𝑜𝑟,  
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         𝜙(−𝑡,−𝑢) = 𝐸(𝑒−𝑖(𝑡𝑋+𝑢𝑌)) = 𝜙(𝑡, 𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅  

Note. If all the moments of order k of  a multi-dimensional random variable, then the 

derivatives 
𝜕𝑘(𝜙(𝑡,𝑢) ) 

𝜕𝑡𝑘−1𝜕𝑢𝑙 
 for 𝑙 = 0,1,2,… , 𝑘 exist and can be obtained from the formula 

𝜕𝑘(𝜙(𝑡,𝑢) ) 

𝜕𝑡𝑘−1𝜕𝑢𝑙 
= 𝑖𝑘𝐸(𝑋𝑘−𝑙𝑌𝑙𝑒𝑖(𝑡𝑋+𝑢𝑌))…… (1) 

 

Remark.  The moment 𝑚𝑘−𝑙,𝑙 is obtained from the formula 𝑚𝑘−𝑙,𝑙 = 𝐸(𝑋𝑘−𝑙 𝑌𝑙) =

1

𝑖𝑘
[
𝜕𝑘(𝜙(𝑡,𝑢) ) 

𝜕𝑡𝑘−1𝜕𝑢𝑙 
]
𝑡=0,𝑢=0

. 

For the moments of the first  and second order we obtain the expressions 

𝑚10 =
1

𝑖
[
𝜕𝜙(𝑡,𝑢)

𝜕𝑡
]
𝑡=0,𝑢=0

, 𝑚01 =
1

𝑖
[
𝜕𝜙(𝑡,𝑢)

𝜕𝑢
]
𝑡=0,𝑢=0

   

𝑚20 =
1

𝑖2
[
𝜕2𝜙(𝑡,𝑢)

𝜕𝑡2
]
𝑡=0,𝑢=0

, 𝑚11 =
1

𝑖2
[
𝜕2𝜙(𝑡,𝑢)

𝜕𝑡𝜕𝑢
]
𝑡=0,𝑢=0

, 𝑚02 =
1

𝑖2
[
𝜕2𝜙(𝑡,𝑢)

𝜕𝑢2
]
𝑡=0,𝑢=0

   

We obtain the characteristic functions of the marginal distributions of the random variables X 

and Y from the formula 𝜙(𝑡, 𝑢) = 𝐸[𝑒𝐼(𝑡𝑋+𝑢𝑌) ] by putting 𝑡 = 0 or 𝑢 = 0 respectively. Thus 

𝜙(𝑡, 0) = 𝐸(𝑒𝑖𝑡𝑋) = 𝜙1(𝑡)  

𝜙(0, 𝑢) = 𝐸(𝑒𝑖𝑡𝑌) = 𝜙2(𝑢) 

i.e., the marginal distribution of X is 𝜙1(𝑡) and the marginal distribution of Y is 𝜙2(𝑢). 

 

Theorem 3.6. Let 𝜙(𝑡) be the characteristic function of the random variable (𝑋, 𝑌). If the 

rectangle (𝑎 − ℎ ≤ 𝑋 < 𝑎 + ℎ, 𝑏 − 𝑔 ≤ 𝑌 < 𝑏 + 𝑔) is continuity rectangle, then  

(𝑎 − ℎ ≤ 𝑃(𝑋 < 𝑎 + ℎ, 𝑏 − 𝑔 ≤ 𝑌 < 𝑏 + 𝑔)  

= lim
𝑇=→∞

1

𝜋2
∫ ∫

sin  ℎ𝑡

𝑡

sin 𝑠𝑢

𝑢
 𝑒−𝑖(𝑎𝑡+𝑏𝑢) 𝜙(𝑡, 𝑢) 𝑑𝑡𝑑𝑢

𝑇

−𝑇

𝑇

−𝑇

… . (1) 

Thus, if we know 𝜙(𝑡, 𝑢), (1) allows us to determine the probability 𝑃(𝑥1 ≤ 𝑋 < 𝑥2, 𝑦 ≤ 𝑌 <

𝑦2) for an arbitrary continuity rectangle. 
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Theorem 3.7. Let 𝐹(𝑥, 𝑦), 𝐹1(𝑥), 𝐹2(𝑦),𝜙(𝑡, 𝑢), 𝜙1(𝑡)  and 𝜙2(𝑢) denote the distribution 

functions and the characteristic function of the random variable (𝑋, 𝑌), 𝑋 𝑎𝑛𝑑 𝑌 respectively. 

The random variable X  and Y are independent iff the equation 𝜙(𝑡, 𝑢) = 𝜙1(𝑡)𝜙2(𝑢) holds 

for all real t and u. 

Proof. 

Suppose that X and Y are independent. 

From the theorem , for any real t and u, 

𝜙( 𝑡, 𝑢) = 𝐸(𝑒𝑖(𝑡𝑋+𝑢𝑌))  

                = 𝐸(𝑒𝐼𝑡𝑋. 𝑒𝑖𝑢𝑌)  

                = 𝐸(𝑒𝐼𝑡𝑋)𝐸(𝑒𝑖𝑢𝑌)  

                = 𝜙1(𝑡)𝜙2(𝑢) .  

 Conversely, Suppose  𝜙( 𝑡, 𝑢) = 𝜙1(𝑡)𝜙2(𝑢)  

If the rectangle (𝑎 − ℎ ≤ 𝑋 < 𝑎 + ℎ, 𝑏 − 𝑔 ≤ 𝑌 < 𝑏 + 𝑔) is a continuity rectangle, then 

𝑃(𝑎 − ℎ ≤ 𝑋 < 𝑎 + ℎ, 𝑏 − 𝑔 ≤ 𝑌 < 𝑏 + 𝑔)  

= lim
𝑇→∞

1

𝜋2
∫ ∫

sinℎ𝑡

𝑡

sin𝑔𝑢

𝑢

𝑇

−𝑇
 𝑒−𝑖(𝑎𝑡+𝑏𝑢) 𝜙(𝑡, 𝑢)𝑑𝑡𝑑𝑢

𝑇

−𝑇
  

= ( lim
𝑇→∞

1

𝜋2
∫

sinℎ𝑡

𝑡

𝑇

−𝑇
 𝑒−𝑖𝑎𝑡 𝜙1(𝑡)𝑑𝑡) + ( lim

𝑇→∞

1

𝜋2
∫

sin𝑔𝑢

𝑢

𝑇

−𝑇
 𝑒−𝑖𝑏𝑢 𝜙2(𝑢)𝑑𝑢)  

= [𝐹(𝑎 + ℎ) − 𝐹(𝑎 − ℎ)][𝐹(𝑏 + 𝑔) − 𝐹(𝑏 − 𝑔)]  

We know that, for every arbitrary points 𝑎1 and 𝑎2 we have, 

𝐹1(𝑥2) − 𝐹(𝑥1) = 𝑃(𝑥1 ≤ 𝑋 ≤ 𝑥2)  

𝑃(𝑥1 ≤ 𝑋 < 𝑥2, 𝑦1 ≤ 𝑌 < 𝑦2) = 𝑃(𝑥1 ≤ 𝑋 ≤ 𝑥2)𝑃(𝑦1 ≤ 𝑌 ≤ 𝑦2) …..(2) 

Which is valid for arbitrary continuity rectangle. 

From (2) we get, 

                     𝐹(𝑥, 𝑦) = 𝐹1(𝑥)𝐹2(𝑌)   

∴ X and Y are independent. 
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Theorem 3.8. (Cramer-Wold Theorem) 

 The distribution function 𝐹(𝑥, 𝑦) of a two two-dimensional random variable (𝑋, 𝑌) is 

uniquely determined by the class of all one-dimensional distribution function of 𝑡𝑋 + 𝑢𝑌 where 

t and u run over all possible real value. 

Proof. 

Let 𝑍 = 𝑡𝑋 + 𝑢𝑌 for all real t and u. 

Let 𝜙𝑧(𝑣) be the characteristic function of Z. 

𝜙𝑧(𝑣) = 𝐸(𝑒𝑖𝑣(𝑡𝑋+𝑢𝑌) )  

            = 𝐸(𝑒𝑖(𝑣𝑡𝑋+𝑣𝑢𝑌) ) 

Put 𝑣 = 1 in (1), then 

𝜙𝑧(1) = 𝐸(𝑒𝑖(𝑡𝑋+𝑢𝑌)) = 𝜙(𝑡, 𝑢)  

∴  𝜙𝑧(1) is the characteristic function of the distribution function 𝐹(𝑥, 𝑦). 

According to the theorem 3.6.1, the function 𝜙(𝑡, 𝑢) is uniquely determines 𝐹(𝑥, 𝑦). 

Hence the theorem is proved. 

Note. Let  us write 

𝑃(𝑡𝑋 + 𝑢𝑌 < 𝑧) = 𝑃(𝑋 cos 𝛼 + 𝑌 sin 𝛼 < 𝑤) 

Where  

cos 𝛼 =
𝑡

√𝑡2 + 𝑢2  
, sin 𝛼 =

𝑢

√𝑡2 + 𝑢2  
, 𝑤 =

𝑧

√𝑡2 + 𝑢2  
 (0 ≤ 𝛼 ≤ 2𝜋) 

The Cramer-Wold theorem can now be formulated in the following way: 

The distribution function 𝐹(𝑥, 𝑦) is uniquely determined by the distribution functions of the 

projections of (𝑋, 𝑌) on all straight lines passing through the origin. 

 

3.7.Probabillity Generating functions 

Let X be a random variable and let 𝑝𝑘 = 𝑃(𝑋 = 𝑘)(𝑘 = 0,1,… ), where Σ𝑘 𝑝𝑘 = 1. 
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Definition. 

 The function defined by the formula 

𝜓(𝑠) = ∑ 𝑝𝑘𝑠
𝑘

𝑘  ,where −1 ≤ 𝑠 ≤ 1……(1) 

is called the probability generality function of 𝑋. 

Clearly, 𝜓(1) = ∑ 𝑝𝑘𝑘 = 1 

Hence, the series of RHS of (1) is absolutely and uniformly convergent in the 

interval |𝑠| ≤ 1. 

∴ The generating function is continuous. 

 

Example 1.  

 The random variable 𝑋 has a binomial distribution 

𝑝𝑘 = (
𝑛
𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘  , (𝑘 = 0,1,2,… 𝑛). 

Find the probability generality function. 

Solution. 

 𝜓(𝑠) = ∑ 𝑝𝑘𝑠
𝑘

𝑘  

  = ∑ (
𝑛
𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 𝑆𝑘𝑛

𝑘=0 = ∑ (
𝑛
𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘  𝑛

𝑘=0  

 𝜓(𝑠) = (𝑝𝑠 + 𝑞)𝑛. 

 

Example 2. 

The random variable X has a Poisson distribution. Find the 𝜓(𝑠) or the 

generating function. 



 

 

153 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

Solution. 

We know that, 𝑝𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!
, (𝑘 = 0,1,2,… )  

𝜓(𝑠) = Σ𝑘 𝑝𝑘𝑠
𝑘 

= Σ𝑘=0
∞  𝑒−𝜆 

𝜆𝑘

𝑘 𝑠
𝑘

 

= Σ𝑘=0
∞  𝑒−𝜆

(𝜆𝑠)𝑘

𝑘!
 

= 𝑒−𝜆 Σ𝑘=0
∞

(𝜆𝑠)𝑘

𝑘!
 

 𝜓(𝑆) = 𝑒−𝜆(1−𝑆). 

 

Moments of the random variable 𝑿 determined by generating function 

 The moments of the random variable 𝑋 can be determined by the 

derivatives at the point 1 of the generating function. 

Moments of first order and second order are  

𝜓′(𝑆) = Σ𝑘𝑘𝑝𝑘𝑆
𝑘−1 

𝜓′′(𝑆) = Σ𝑘𝑘(𝑘 − 1)𝑝𝑘𝑆
𝑘−2  

𝑚1 = 𝜓′(1) = Σ𝑘𝑘𝑝𝑘 = 𝐸(𝑋)  

𝑚2 = 𝜓′′(1) = Σ𝑘𝑘(𝑘 − 1)𝑝𝑘 = 𝐸(𝑋
2) − 𝐸(𝑋)  

𝐸(𝑋2) = 𝜓′′(1) + 𝜓′(1).  
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UNIT – IV 

SOME PROBABILITY DISTRIBUTION 

 

4.1. One-Point and Two-Point Distributions  

 

Definition. 

 The random variable 𝑋 has a one-point distribution if there exists a point 

𝑥0 such that 

𝑃(𝑋 = 𝑥0) = 1   …… (1) 

(1) gives us the probability function.  

The distribution function of this probability distribution is given by the formula 

𝐹(𝑥) = {
0    𝑓𝑜𝑟 𝑥 ≤ 𝑥0
1    𝑓𝑜𝑟 𝑥 > 𝑥0

 

The characteristic function of one-point distribution is obtained from the formula 

∅(𝑡) = 𝑒𝑖𝑡𝑥0 

Theorem 4.1. 

The random variable 𝑋 has a one-point distribution iff the variance of a 

random variable 𝑋 equals zero. 

Proof. 

Let 𝑋 be a random variable and has a one-point distribution. 

 i.e., 𝑃(𝑋 = 𝑥0) = 1 

The characteristic function is ∅(𝑡) = 𝑒𝑖𝑡𝑥0. 
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 ∅′(𝑡) = 𝑒𝑖𝑡𝑥0(𝑖𝑥0);   ∅
′′(𝑡) = 𝑒𝑖𝑡𝑥0(𝑖𝑥0)

2 

 ∅′(0) = 𝑖𝑥0            ;    ∅
′′(0) = (𝑖𝑥0)

2 

 𝑚1 =
𝑖𝑥0

𝑖
= 𝑥0      ;    𝑚2 =

(𝑖𝑥0)
2

𝑖2
= 𝑥0

2 

 𝑚1 = 𝑥0                ;      𝑚2 = 𝑥0
2 

∴ 𝑚𝑘 = 𝑥0
𝑘     ∀𝑘. 

𝐷2(𝑋) = 𝑚2 −𝑚1
2 = 𝑥0

2 − 𝑥0
2 = 0   

𝜎 = 𝐷2(𝑋) = 0  

Conversely, let the variance of a random variable 𝑋 equals zero  

i.e., 𝐷2(𝑋) = 0 

i.e, 𝐸([𝑋 − 𝐸(𝑋)]2) = 0                  → (1) 

Since expression (𝑋 − 𝐸(𝑋))
2
 is non-negative, equation (1) is satisfied only if 

 𝑃[𝑋 − 𝐸(𝑋) = 0] = 1 

 ⇒ 𝑃[𝑋 = 𝐸(𝑋)] = 1 

i.e., 𝑃[𝑋 = 𝑥0] = 1 where 𝑥0 = 𝐸(𝑋) 

∴ 𝑋 has a one-point distribution. 

 

Definition. 

 The random variable 𝑋 has a two-point distribution if there exist two 

values 𝑥1 and 𝑥2 such that  

𝑃(𝑋 = 𝑥1) = 𝑝, 𝑃(𝑋 = 𝑥2) = 1 − 𝑝, (0 < 𝑝 < 1) …… (1) 
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Put 𝑥1 = 1 and 𝑥2 = 0 in (1), then we have, 

𝑃(𝑋 = 1) = 𝑝;    𝑃(𝑋 = 0) = 1 − 𝑝, (0 < 𝑝 < 1) 

This distribution is called the zero-one distribution. 

 

The characteristic function of zero-one distribution 

 Let 𝑋 be the random variable and has a zero-one distribution. Find 

characteristic function of 𝑋, central moments and 𝛾. 

Proof. 

Given 𝑋 has a zero-one distribution 

 i.e., 𝑃(𝑋 = 1) = 𝑝, 𝑃(𝑋 = 0) = 1 − 𝑝, (0 < 𝑝 < 1) 

The characteristic function ∅(𝑡) = 𝐸(𝑒𝑖𝑡𝑋) 

 = 𝑝𝑒𝑖𝑡𝑋1 + (1 − 𝑝)𝑒𝑖𝑡𝑋0 = 𝑝𝑒𝑖𝑡 + (1 − 𝑝) 

∅(𝑡) = 1 + 𝑝(𝑒𝑖𝑡 − 1)  

We know that 𝑚𝑙 =
∅𝑙(0)

𝑖𝑙
 

 ∅(𝑡) = 1 + 𝑝(𝑒𝑖𝑡 − 1) 

 ∅′(𝑡) = 𝑖𝑝𝑒𝑖𝑡 

 ∅′′(𝑡) = (𝑖)2𝑝𝑒𝑖𝑡 

 ∴ ∅𝑙(𝑡) = 𝑖𝑙𝑝𝑒𝑖𝑡 

 ∅𝑙(0) = 𝑖𝑙𝑝 

 𝑚𝑙 = 𝑝   ∀𝑘 

Variance, 𝐷2(𝑋) = 𝑚2 −𝑚1
2 = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝) 
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 𝐷2(𝑋) = 𝑝(1 − 𝑝). 

Since 𝜇3 = 𝑚3 − 3𝑚1𝑚2 + 2𝑚1
3 

                 = 𝑝 − 3𝑝2 + 3𝑝3  

                 = 𝑝(1 − 𝑝)(1 − 2𝑝)  

Then we obtain, 

𝛾 =
𝜇3

𝜇2
3/2 =

𝑝(1−𝑝)(1−2𝑝)

𝑝3/2(1−𝑝)3/2
  

If 𝑝 = 0.5, then 𝛾 = 0 since here X has a symmetric distribution. 

 

4.2. The Bernoulli Scheme. The Binomial Distribution. 

 Relation between zero-one distribution and binomial distribution (or) 

Bernoulli scheme. 

 Consider 𝑛 random experiments. 

 Let the event 𝐴 be success with probability (or) failure with probability 

𝑞 = 1 − 𝑝 

 The results of the ‘n’ experiments are independent. 

 From the ‘n’ random experiments, event 𝐴 may occurs ‘k’ times 

(𝑘 = 1,1,2, ……𝑛). 

 Let the number of occurrence of 𝐴 is a random variable 𝑋 that can take on 

the values 𝑘 = 0,1, … . . , 𝑛, where the equality 𝑥 = 𝑘 means that in ‘n’ 

experiments the event 𝐴 has occurred ‘k’ times. 

∴ 𝑋 has the binomial probability function 

𝑃(𝑋 = 𝑘) = (
𝑛
𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 
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The distribution function of binomial distribution is  

𝐹(𝑥) = 𝑃(𝑋 < 𝑥) = ∑(
𝑛
𝑘
)

𝑘<𝑥

𝑝𝑘(1 − 𝑝)𝑛−𝑘 

Where the summation extends over all non-negative integers less than 𝑥. 

Put 𝑛 = 1. Then, event 𝐴 occurs ‘k’ times where 𝑘 = 0,1 

∴ 𝑃(𝑋 = 1) = 𝑝, 𝑃(𝑋 = 0) = 1 − 𝑝  

∴ 𝑋 has zero-one distribution. 

Claim: For 𝑛 ≥ 2, the binomial distribution obtained from the zero-one 

distribution. 

Let 𝑋𝑟(𝑟 = 1,2, … . . , 𝑛) be independent random variable with the same zero-one 

distribution. 

The probability function of ever 𝑋𝑟 has the form 

𝑃(𝑋𝑟 = 1) = 𝑝, 𝑃(𝑋𝑟 = 0) = 1 − 𝑝 

Let 𝑋 = 𝑋1 + 𝑋2 +⋯…+ 𝑋𝑟 

The random variable 𝑋 can take values 𝑘 = 0,1, … . , 𝑛. 

The event 𝑋 = 𝑘 occurs iff 𝑘 of the 𝑛 random variable 𝑋𝑟 take on the value one 

and 𝑛 − 𝑘 of them take on the value zero. 

For 𝑘, it may happen (
𝑛
𝑘
) different ways. 

By the independence of the random variable 𝑋𝑟, we get 

𝑃(𝑋 = 𝑘) = (
𝑛
𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 

∴ 𝑋 has the binomial distribution. 
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Theorem 4.2 

Let 𝑋 = 𝑋1 + 𝑋2 +⋯… .+𝑋𝑛 where each 𝑋𝑖 are zero-one distribution 

with characteristic function ∅1(𝑡), ∅2(𝑡),…… , ∅𝑛(𝑡). Find the characteristic 

function of 𝑋, moment, central moment and 𝛾 of 𝑋. 

Proof. 

Let ∅(𝑡) be the characteristic function of 𝑋  

Given 𝑋1, 𝑋2, …… , 𝑋𝑛 be the zero-one distribution. 

The characteristic function 

  ∅𝑖(𝑡) = [1 + 𝑝(𝑒𝑖𝑡 − 1)] where 𝑖 = 1 𝑡𝑜 𝑛. 

Let 𝑋 = 𝑋1 + 𝑋2 +⋯… .+𝑋𝑛 

 ∅(𝑡) = 𝐸(𝑒𝑖𝑡𝑋) = 𝐸(𝑒𝑖𝑡(𝑋1+𝑋2+⋯…+𝑋𝑛) ) 

[By theorem: The characteristic function of the sum of an arbitrary finite number 

of independent random variables equals the product of their characteristic 

functions]. 

i.e., ∅(𝑡) = ∅1(𝑡) ∅2(𝑡)……∅𝑛(𝑡) 

 ∅(𝑡) = [1 + 𝑝(𝑒𝑖𝑡 − 1)]
𝑛

 

 𝑚𝑙 =
∅𝑙(0)

(𝑖)𝑙
 

∅(𝑡) = [1 + 𝑝(𝑒𝑖𝑡 − 1)]
𝑛

  

∅′(𝑡) = 𝑛[1 + 𝑝(𝑒𝑖𝑡 − 1)]
𝑛−1

(𝑖𝑝)  

∅′(0) = 𝑛[1 + 𝑝(0)]𝑛−1(𝑖𝑝) = 𝑛𝑖𝑝   

𝑚1 =
∅′(0)

(𝑖)1
=

𝑛𝑝𝑖

𝑖
= 𝑛𝑝  
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𝑚1 = 𝑛𝑝  

∅′′(𝑡) = 𝑛(𝑛 − 1)(𝑖𝑝)2[1 + 𝑝(𝑒𝑖𝑡 − 1)]
𝑛−2

(𝑒𝑖𝑡)
2
+ 𝑛(𝑖𝑝)𝑖𝑒𝑖𝑡[1 + 𝑝(𝑒𝑖𝑡 −

1)]
𝑛−1

  

𝑚2 =
∅′′(0)

(𝑖)2
=

[𝑛𝑝+𝑛(𝑛−1)𝑝2](𝑖)2

(𝑖)2
= 𝑛𝑝 + 𝑛(𝑛 − 1)𝑝2  

𝜇1 = 0  

𝜇2 = 𝑚2 −𝑚1
2 = 𝑛𝑝 + 𝑛(𝑛 − 1)𝑝2 − 𝑛2𝑝2  

       = 𝑛𝑝 + 𝑛2𝑝2 − 𝑛𝑝2 − 𝑛2𝑝2 

𝜇2 = 𝑛𝑝(1 − 𝑝)  

𝜇3 = 𝑚3 − 3𝑚1𝑚2 + 2𝑚1
3  

𝜇3 = 𝑛𝑝(1 − 𝑝)(1 − 2𝑝)  

𝛾 =
𝜇3

𝜇2
3/2 =

𝑛𝑝(1−𝑝)(1−2𝑝)

[𝑛𝑝(1−𝑝)]3/2 
=

𝑛𝑝(1−𝑝)(1−2𝑝)

𝑛3/2 𝑝
3
2(1−𝑝)3/2

   

 = 𝑛1−
3

2 𝑝1−
3

2 (1 − 𝑝)1−
3

2 (1 − 2𝑝) 

 = 𝑛−
1

2𝑝−
1

2(1 − 𝑝)−
1

2(1 − 2𝑝) 

𝛾 =
1−2𝑝

√𝑛𝑝(1−𝑝)
 . 

 

Theorem 4.3(Addition theorem for the Binomial distribution) 

Let 𝑋 and 𝑌 be two independent random variable with binomial 

distribution. Let 𝑍 = 𝑋 + 𝑌. Find the characteristic function of 𝑍. 

Proof 
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 Let ∅(𝑡), ∅1(𝑡), ∅2(𝑡) be the characteristic function of 𝑍, 𝑋 and 𝑌 

respectively. 

∅1(𝑡) = [1 + 𝑝(𝑒
𝑖𝑡 − 1)]

𝑛1
 

∅2(𝑡) = [1 + 𝑝(𝑒𝑖𝑡 − 1)]
𝑛2

 

[By theorem: The characteristic function of sum of an arbitrary finite number of 

independent random variables equality to the product of their characteristic 

function] 

i.e., ∅(𝑡) = ∅1(𝑡)∅2(𝑡) 

       = [1 + 𝑝(𝑒𝑖𝑡 − 1)]
𝑛1
. [1 + 𝑝(𝑒𝑖𝑡 − 1)]

𝑛2
 

 ∅(𝑡) = [1 + 𝑝(𝑒𝑖𝑡 − 1)]
𝑛1+𝑛2

 

∴ 𝑍 has the binomial distribution with 𝑛 = 𝑛1 + 𝑛2. 

 

Problem. Find the characteristic function moments and central moment of the 

random variable 𝑌 =
𝑋

𝑛
, where 𝑋 is the random variable and has the binomial 

distribution. 

Solution. 

Let 𝑌 =
𝑋

𝑛
 where 𝑋 is random variable and has the binomial distribution. 

The random variable 𝑌 can take on the values 

 
𝑘

𝑛
= 0,

1

𝑛
, ……

𝑛−1

𝑛
, 1 

Since the probability that 𝑌 =
𝑘

𝑛
 is equals to the probability that 𝑋 = 𝑘 

The probability function of 𝑌 is 
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 𝑃 (𝑌 =
𝑘

𝑛
) = 𝑃(𝑋 = 𝑘) = (

𝑛
𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 

The characteristic function 𝜙𝑌(𝑡) of a random variable Y is given by: 

𝜑𝑌(𝑡) = 𝐸[𝑒𝑖𝑡𝑌] = 𝐸[𝑒𝑖𝑡
𝑋
𝑛]. 

Since X is binomially distributed, the characteristic function of X, denoted 𝜑𝑋(𝑡), 

is: 

𝜑𝑋(𝑡) = 𝐸[𝑒𝑖𝑡𝑋] = ((1 − 𝑝) + 𝑝𝑒𝑖𝑡)
𝑛

 

For 𝑌 =
𝑋𝑛

𝑌
 , we substitute 

𝑡

𝑛
 into the characteristic function of X: 

𝜑𝑌(𝑡) = 𝐸[𝑒𝑖𝑡
𝑋
𝑛] = 𝜑𝑋 (

𝑡

𝑛
). 

Thus, the characteristic function of Y is: 

𝜑𝑌(𝑡) = ((1 − 𝑝) + 𝑝𝑒𝑖
𝑡
𝑛)

𝑛

. 

Moments of Y obtained as follows: 

The moments of Y can be derived from its expected values. The k-th moment of 

Y is 𝐸[𝑌𝑘]. Using the fact that 𝑌 =
𝑋

𝑛
=n, we can express this as: 

𝐸[𝑌𝑘] = 𝐸[(
𝑋

𝑛
)
𝑘
] =

1

𝑛𝑘
𝐸[𝑋𝑘]. 

We know the moments of a binomial random variable X, which are related to the 

parameters 𝑛 and 𝑝.  

The first moment is: 

𝐸[𝑋] = 𝑛𝑝. 

The second moment is: 
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𝐸[𝑋2] = 𝑛𝑝(1 − 𝑝) + (𝑛𝑝)2. 

For higher moments, we can use the binomial expansion and properties of 

binomial random variables, but the key point is that 𝐸[𝑌𝑘] will be the 

corresponding binomial moments scaled by 𝑛−𝑘. 

In particular, 

       𝑚1 = 𝑝,   

       𝑚2 =
𝑝

𝑛
+
𝑛−1

𝑛
 𝑝2,    

        𝜇2 = 𝑚2 −𝑚1
2 =

𝑝

𝑛
+
𝑛−1

𝑛
 𝑝2 − 𝑝2 =

𝑝(1−𝑝)

𝑛
.  

 

5.4. The Polya and Hyper geometric distribution. 

 

Polya distribution. 

Consider an urn with ‘b’ white and ‘c’ black balls. Let 𝑏 + 𝑐 = 𝑁. 

We draw one ball at random and before drawing the next ball we replace the one 

we have drawn and add 𝑠 balls of the same colour. Repeat the procedure ‘n’ times. 

Let 𝑋 be random variable which takes on the values 𝑘(𝑘 = 0,1, … . . , 𝑛) if as a 

result of ‘n’ drawings. We draw a white balls ‘k’ times. 

We shall find the probability function of 𝑋. 

The probability of the successive drawing of 𝑘 white balls is 

𝑏(𝑏 + 𝑠)…… . . [𝑏 + (𝑘 − 1)𝑆]

𝑁(𝑁 + 𝑆)…… . . [𝑁 + (𝑘 − 1)𝑆]
 

Similarly, The probability of drawing 𝑘 white balls in turn and then 𝑛 − 𝑘 black 

balls is 
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𝑏(𝑏 + 𝑠) …… [𝑏 + (𝑘 − 1)𝑠]𝑐(𝑐 + 𝑠) …… [𝑐 + (𝑛 − 𝑘 − 1)𝑠]

𝑁(𝑁 + 𝑆)…… [𝑁 + (𝑛 − 1)𝑆]
    … (1) 

The expression (1) is the probability of drawing 𝑘 white and 𝑛 − 𝑘 black balls in 

any order. The order of drawing affects only the order of the terms in the 

numerator of (1). 

Since 𝑘 white and 𝑛 − 𝑘 black balls can be drawn in (
𝑛
𝑘
) different ways, we have 

∴ 𝑃(𝑋 = 𝑖𝑘)

= (
𝑛
𝑘
)
𝑏(𝑏 + 𝑠) …… [𝑏 + (𝑘 − 1)𝑠]𝑐(𝑐 + 𝑠) …… [𝑐 + (𝑛 − 𝑘 − 1)𝑠]

𝑁(𝑁 + 𝑠)…… [𝑁 + (𝑛 − 1)𝑠]
 

 

Definition. 

The random variable 𝑋 with the probability distribution 

 𝑃(𝑋 = 𝑘) = (
𝑛
𝑘
)
𝑏(𝑏+𝑠)……[𝑏+(𝑘−1)𝑠]𝑐(𝑐+𝑠)……[𝑐+(𝑛−𝑘−1)𝑠]

𝑁(𝑁+𝑆)……[𝑁+(𝑛−1)𝑆]
    … (2) 

has a Polya distribution. 

 

Denote 𝑁𝑝 = 𝑏,𝑁𝑞 = 𝑐,𝑁𝛼 = 𝑠, where 𝑝 and 𝑞 are probabilities of drawing a 

white and a black ball respectively, on the 1st drawing. 

Equation (2) ⇒ 

𝑃(𝑋 = 𝑘)

= (
𝑛
𝑘
)
𝑝(𝑝 + 𝛼)…… [𝑝 + (𝑘 − 1)𝛼]𝑞(𝑞 + 𝛼)…… [𝑞 + (𝑛 − 𝑘 − 1)𝛼]

1(1 + 𝛼)…… [1 + (𝑛 − 1)𝛼]
 

Clearly, ∑ 𝑃(𝑋 = 𝐾) = 1𝑛
𝑘=0  

i.e., ∑ (
𝑛
𝑘
)
𝑝(𝑝+𝛼)……[𝑝+(𝑘−1)𝛼]𝑞(𝑞+𝛼)……[𝑞+(𝑛−𝑘−1)𝛼]

1(1+𝛼)……[1+(𝑛−1)𝛼]
𝑛
𝑘=0 = 1 
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Find 1st and 2nd moments of 𝑋. 

𝑚1 = 𝐸(𝑋)  

∑ 𝑘𝑃(𝑋 = 𝑘)𝑛
𝑘=0   

=∑ 𝑘 (
𝑛
𝑘
)
𝑝(𝑝 + 𝛼)…… [𝑝 + (𝑘 − 1)𝛼]𝑞(𝑞 + 𝛼)…… [𝑞 + (𝑛 − 𝑘 − 1)𝛼]

1(1 + 𝛼)…… [1 + (𝑛 − 1)𝛼]

𝑛

𝑘=0
 

=∑ 𝑘
𝑛(𝑛 − 1)!

𝑘(𝑘 − 1)! (𝑛 − 𝑘)!

𝑝(𝑝 + 𝛼)…… [𝑝 + (𝑘 − 1)𝛼]𝑞(𝑞 + 𝛼)…… [𝑞 + (𝑛 − 𝑘 − 1)𝛼]

1(1 + 𝛼)…… [1 + (𝑛 − 1)𝛼]

𝑛

𝑘=0
 

 = 𝑝𝑛∑ (
𝑛 − 1
𝑘 − 1

)
(𝑝+𝛼)……[𝑝+(𝑘−1)𝛼]𝑞(𝑞+𝛼)……[𝑞+(𝑛−𝑘−1)𝛼]

(1+𝛼)……[1+(𝑛−1)𝛼]
𝑛
𝑘=0  

Put 𝑙 = 𝑘 − 1 

𝐸(𝑋)

= 𝑝𝑛∑ (
𝑛 − 1
𝑙
)
(𝑝 + 𝛼)…… [𝑝 + 𝑙𝛼]𝑞(𝑞 + 𝛼)…… [𝑞 + (𝑛 − 𝑙 − 2)𝛼]

(1 + 𝛼)…… [1 + (𝑛 − 1)𝛼]

𝑛−1

𝑙=0
 

∴ 𝐸(𝑋) = 𝑝𝑛  

𝐸(𝑋2) = ∑ 𝐾2𝑃(𝑋 = 𝑘)𝑛
𝑘=0   

=∑ 𝑘2
𝑛(𝑛 − 1)!

𝑘(𝑘 − 1)! (𝑘 − 𝑟)!

𝑝(𝑝 + 𝛼)…… [𝑝 + (𝑘 − 1)𝛼]𝑞(𝑞 + 𝛼)…… [𝑞 + (𝑛 − 𝑘 − 1)𝛼]

(1 + 𝛼)…… [1 + (𝑛 − 1)𝛼]

𝑛

𝑘=0
 

= 𝑛𝑝∑ 𝑘(
𝑛 − 1
𝑘 − 1

)
(𝑝 + 𝛼)…… [𝑝 + (𝑘 − 1)𝛼]𝑞(𝑞 + 𝛼)…… [𝑞 + (𝑛 − 𝑘 − 1)𝛼]

(1 + 𝛼)…… [1 + (𝑛 − 1)𝛼]

𝑛

𝑘=1
 

Put 𝑙 = 𝑘 − 1 

= 𝑛𝑝∑ (𝑙 + 1) (
𝑛 − 1
𝑙
)
(𝑝 + 𝛼)…… [𝑝 + 𝑙𝛼]𝑞(𝑞 + 𝛼)…… [𝑞 + (𝑛 − 𝑙 − 2)𝛼]

(1 + 𝛼)…… [1 + (𝑛 − 1)𝛼]

𝑛−1

𝑙=0
 

= 𝑛𝑝{∑ 𝑙 (
𝑛 − 1
𝑙
)
(𝑝 + 𝛼)…… [𝑝 + 𝑙𝛼]𝑞(𝑞 + 𝛼)…… [𝑞 + (𝑛 − 𝑙 − 2)𝛼]

(1 + 𝛼)…… [1 + (𝑛 − 1)𝛼]

𝑛−1

𝑙=0

+∑ (
𝑛 − 1
𝑙
)
(𝑝 + 𝛼)…… [𝑝 + 𝑙𝛼]𝑞(𝑞 + 𝛼)…… [𝑞 + (𝑛 − 𝑙 − 2)𝛼]

(1 + 𝛼)…… [1 + (𝑛 − 1)𝛼]

𝑛−1

𝑙=0
 

= 𝑛𝑝(𝐴 + 𝐵)  
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𝐴 =∑ (
𝑛 − 1
𝑙
)
(𝑝 + 𝛼)(𝑃 + 2𝛼)…… [𝑝 + 𝑙𝛼]𝑞 …… [𝑞 + 𝑛 − 𝑙 − 2]𝛼

(1 + 𝛼)…… [1 + (𝑛 − 1)𝛼]

𝑛−1

𝑙=0
 

=∑
𝑙(𝑛 − 1)(𝑛 − 2)!

𝑙(𝑙 − 1)! (𝑛 − 𝑙 + 1)!

(𝑝 + 𝛼)(𝑝 + 2𝛼)……(𝑝 + 𝑙𝛼)𝑞 …… [𝑞 + 𝑛 − 𝑙 − 2]𝛼

(1 + 𝛼)…… [1 + (𝑛 − 1)𝛼]

𝑛−1

𝑙=0
 

=
(𝑝 + 𝛼)(𝑛 − 1)

1 + 𝛼
∑ (

𝑛 − 2
𝑙 − 1

)
(𝑝 + 2𝛼)……(𝑝 + 𝑙𝛼)𝑞 …… [𝑞 + 𝑛 − 𝑙 − 2]𝛼

[1 + (𝑛 − 1)𝛼]

𝑛−1

𝑙=1
 

      [∵ 𝑟 = 𝑙 − 1, 𝑙 = 𝑟 + 1,−𝑙 = −𝑟 − 1] 

𝐴 =
(𝑃+𝛼)(𝑛−1)

1+𝛼
∑ (

𝑛 − 2
𝑙 − 1

)
(𝑝+2𝛼)……[𝑝+(𝑟+1)𝛼]𝑞……[𝑞+(𝑛−𝑟−3)𝛼]

(1+2𝛼)……[1+(𝑛−1)𝛼]
𝑛−1
𝑙=1   

𝐴 =
(𝑝+𝛼)(𝑛−1)

1+𝛼
𝑋  

Clearly, 

𝐸(𝑋2) = 𝑛𝑝 [
(𝑝 + 𝛼)(𝑛 − 1)

1 + 𝛼
+ 1] = 𝑛𝑝 [

𝑛𝑝 − 𝑝 + 𝑛𝛼 − 𝛼 + 1 + 𝛼

1 + 𝛼
] 

 = 𝑛𝑝 [
𝑛𝑝+𝑛𝛼+1−𝑝

1+𝛼
] 

𝐸(𝑋2) = 𝑛𝑝 [
𝑛𝑝+𝑛𝛼+𝑞

1+𝛼
]  

𝜇1 = 0  

𝜇2 = 𝐷
2(𝑋) = 𝑚2 −𝑚2

1  

 = 𝑛𝑝
𝑛𝑝+𝑞+𝑛𝛼

1+𝛼
− 𝑛2𝑝2 = 𝑛𝑝 [

𝑛𝑝+𝑞+𝑛𝛼−𝑛𝑝(1+𝛼)

1+𝛼
] 

 = 𝑛𝑝 [
𝑛𝑝+𝑞+𝑛𝛼−𝑛𝑝−𝑛𝑝𝛼

1+𝛼
] = 𝑛𝑝 [

𝑞+𝑛𝛼(1−𝑃)

1+𝛼
] 

 = 𝑛𝑝 [
𝑞+𝑛𝛼𝑞

1+𝛼
] 

𝐷2(𝑋) = 𝑛𝑝𝑞 (
1+𝑛𝛼

1+𝛼
). 

 Remark. 

In the Polya scheme ‘s’ may also be negative. Since inequalities 
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 𝑏 + (𝑘 − 1)𝑆 ≥ 1 and 𝑐 + (𝑛 − 𝑘 − 1)𝑆 ≥ 1 

 must hold, 𝑘 must then satisfy the double inequality. 

max (0, 𝑛 − 1 +
𝑐−1

𝑆
) ≤ 𝑘 ≤ min (𝑛,

1−𝑏

𝑆
+ 1). 

  

Theorem 4.4 

 If for 𝑁 = 1,2,… .. equality 𝑝 =
𝑏

𝑁
= constant is satisfied and lim

𝑁→∞
𝛼 = 0. 

Then the probability fucniton of the random variable 𝑋 with Polya distribution 

tends to the probability function at the binomial distribution. 

Proof. 

Let 𝑁, 𝑏 and 𝑐 tends to infinity so that 

𝑝 =
𝑏

𝑁
=constant 

Clearly, 𝑞 = 1 − 𝑝 = constant 

Suppose that, lim
𝑁→∞

𝛼 = 0 

We know that 𝑁𝛼 = 𝑆 

⇒ 𝛼 =
𝑆

𝑁
⇒ 𝑙𝑖𝑚

𝑁→∞
𝛼 = 𝑙𝑖𝑚

𝑁→∞

𝑆

𝑁
⇒ 0 = 𝑙𝑖𝑚

𝑁→∞

𝑆

𝑁
  

⇒ 𝑆 is constant 

𝑃(𝑋 = 𝑘) = (
𝑛
𝑘
) 
𝑝(𝑝+𝛼)……[𝑝+(𝑘−1)𝛼]𝑞(𝑞+𝛼)……[𝑞+(𝑛−𝑘−1)𝛼]

1(1+𝛼)……[1+(𝑛−1)𝛼]
  

lim
𝑁→∞

𝑃(𝑋 = 𝑘) = (
𝑛
𝑘
) 𝑝𝑘𝑞𝑛−𝑘  

This is the probability distribution of binomial distribution. 
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Hyper geometric distribution 

 Hyper geometric distribution is obtained from Polya distribution by putting 

𝑠 = −1,s 

𝑃(𝑋 = 𝑘) = (
𝑛
𝑘
)
𝑏(𝑏+𝑠)……[𝑏+(𝑘−1)𝑠]𝑐(𝑐+𝑠)……[𝑐+(𝑛−𝑘−1)𝑠]

𝑁(𝑁+𝑆)……[𝑁+(𝑛−1)𝑆]
   

Put 𝑁𝑝 = 𝑛;𝑁𝑞 = 𝑐; 𝑁𝛼 = 𝑠 = −1 

𝑃(𝑋 = 𝑘) = (
𝑛
𝑘
) 
𝑁𝑃(𝑁𝑃−1)……(𝑁𝑃−𝐾+1)𝑁𝑞……(𝑁𝑞−𝑛+𝑘−1)

𝑁(𝑁−1)…….(𝑁−𝑛+1)
  

𝑃(𝑋 = 𝑘) =
(
𝑁𝑝
𝑘
) (

𝑁𝑞
𝑛−𝑘

)

(𝑁𝑛)
  

This is the probability function of Hyper geometric distribution. 

𝑚1 = 𝐸(𝑋) = 𝑛𝑝  

We know that 𝐷2(𝑋) = 𝑛𝑝𝑞
1+𝑛𝛼

1+𝛼
 

𝑁𝛼 = 𝑆 ⇒ 𝑁𝛼 = 1  

⇒ 𝛼 = −
1

𝑁
  

𝐷2(𝑋) = 𝑛𝑝𝑞 
1−

𝑛

𝑁

1−
1

𝑁

  

𝐷2(𝑋) = 𝑛𝑝𝑞
𝑁−𝑛

𝑁−1
 . 

 

4.5. The Poisson distribution 

 

Definition. 

A random variable 𝑋 with probability function is  
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𝑃(𝑋 = 𝑟) =
𝜆𝑟

𝑟!
 𝑒−𝜆, 𝑟 = 0,1,2, … 

where 𝜆 is a positive constant is called the Poisson distribution. 

 

Derive characteristic function and moments and central moments of Poisson 

distribution 

The characteristic function 𝜑𝑋(𝑡) of a random variable X is defined as: 

𝜑𝑋(𝑡) = 𝐸[𝑒𝑖𝑡𝑋]. 

For the Poisson distribution, we can calculate this as follows. Using the definition 

of the expected value and the PMF of the Poisson distribution: 

𝜑𝑋(𝑡) = 𝐸[𝑒𝑖𝑡𝑋] = ∑𝑒𝑖𝑡𝑘𝑃(𝑋 = 𝑘)

∞

𝑘=0

=∑𝑒𝑖𝑡𝑘
𝜆𝑘𝑒−𝜆

𝑘!

∞

𝑘=0

. 

We can factor out 𝑒−𝜆 since it does not depend on k: 

𝜑𝑋(𝑡) = 𝐸[𝑒𝑖𝑡𝑋] = 𝑒−𝜆 ∑
(𝜆𝑒𝑖𝑡)

𝑘

𝑘!
∞
𝑘=0 . 

The sum is now the Taylor series expansion of 𝑒𝜆𝑒𝑖𝑡: 

𝜑𝑋(𝑡) = 𝑒−𝜆𝑒𝜆𝑒
𝑖𝑡
= 𝑒𝜆(𝑒

𝑖𝑡−1). 

Thus, the characteristic function of a Poisson random variable X with parameter 

𝜆 is: 

𝜑𝑋(𝑡) = 𝑒𝜆(𝑒
𝑖𝑡−1). 

 

∅(𝑡) = 𝑒𝜆(𝑒
𝑖𝑡−1)  

Then we obtain the moments as 
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𝑚1 = 𝜆; 𝑚2 = 𝜆(𝜆 + 1); 𝜇2 = 𝜆  

 

Theorem 4.5. 

Let the random variable 𝑋𝑛 have a binomial distribution defined by formula 

 𝑃(𝑋𝑛 = 𝑟) =
𝑛!

𝑟!(𝑛−𝑟)!
 𝑃𝑟(1 − 𝑃)𝑛−𝑟 

Where 𝑟 takes on the values 0,1,2, … . . , 𝑛. If for 𝑛 = 1,2, … .. the relation 𝑝 =
𝜆

𝑛
 

holds, where 𝜆 > 0 is a constant, then 

lim
𝑛→∞

𝑃(𝑋𝑛 = 𝑟) =
𝜆𝑟

𝑟!
 𝑒−𝜆 

Proof. 

 𝑃(𝑋𝑛 = 𝑟) =
𝑛!

𝑟!(𝑛−𝑟)!
 (1 − 𝑃)𝑛−𝑟 

 Put 𝑃 =
𝜆

𝑛
 

 𝑃(𝜆𝑛 = 𝑟) =
𝑛!

𝑟!(𝑛−𝑟)!
 (
𝜆

𝑛
)
𝑟
(1 −

𝜆

𝑛
)
𝑛−𝑟

 

   =
𝑛(𝑛−1)……(𝑛−𝑟+1)

𝑟!

𝜆𝑟

𝑛𝑟
 (1 −

𝜆

𝑛
)
𝑛
(1 −

𝜆

𝑛
)
−𝑟

  

   =
𝜆𝑟

𝑟!
 (1 −

𝜆

𝑛
)
𝑛 𝑛(𝑛−1)……(𝑛−𝑟+1)

𝑟!

1

(1−
𝜆

𝑛
)
𝑟  

  𝑃(𝜆𝑛 = 𝑟) =
𝜆𝑟

𝑟!
 (1 −

𝜆

𝑛
)
𝑛 1.(1−

1

𝑛
)…..(1−

𝑟−1

𝑛
)

(1−
𝜆

𝑛
)
𝑟  

lim
𝑛→∞

𝑃(𝑋𝑛 = 𝑟) =
𝜆𝑟

𝑟!
lim
𝑛→∞

(1 −
𝜆

𝑛
)
𝑛
(
1.(1−

1

𝑛
)…..(1−

𝑟−1

𝑛
)

(1−
𝜆

𝑛
)
𝑟 )  

∴ 𝑙𝑖𝑚
𝑛→∞

𝑃(𝑋𝑛 = 𝑟) =
𝜆𝑟

𝑟!
 𝑒−𝜆   
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Since, lim
𝑛→∞

(1 −
𝜆

𝑛
)
𝑛
= 𝑒−𝜆 + 𝑙𝑖𝑚

𝑛→∞
(
1.(1−

𝜆

𝑛
)……(1−

𝑟−1

𝑛
)

(1−
𝜆

𝑛
)
𝑟 )  

∴ 𝑙𝑖𝑚
𝑛→∞

𝑃(𝑋𝑛 = 𝑟) =
𝜆𝑟

𝑟!
 𝑒−𝜆  

Hence the proof. 

 

Remark. 

 In figure 1, there are two graphs, one of binomial distribution with 𝑛 = 0.5  

and 𝑝 = 0.3, 𝜆 = 1.5  and one of the poisson distribution with same 𝜆 = 1.5. In 

figure 2 represents two such graphs for 𝑛 = 10 and 𝑝 = 0.15, then 𝜆 = 1.5. 

∴ For larger values of 𝑛, the binomial and Poisson distribution will almost 

coincide. 

 

 

Figure 1 Figure 2 



 

 

172 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

Addition theorem for independent random variable with Poisson 

distribution 

 Let the independent random variable 𝑋1 and 𝑋2 have Poisson distribution. 

Let 𝑋 = 𝑋1 + 𝑋2. Then 𝑋 has a Poisson distribution. 

Proof. 

Let the independent random variable 𝑋1 and 𝑋2 have Poisson distribution. 

 𝑃(𝑋1 = 𝑟) =
𝜆1
𝑟

𝑟!
𝑒−𝜆 ;  𝑃(𝑋2 = 𝑟) =

𝜆2
𝑟

𝑟!
𝑒−𝜆 , (𝑟 = 0,1,2, … . ) 

The characteristic function of 𝑋1 and 𝑋2 are 

∅1(𝑡) = 𝑒[𝜆1(𝑒
𝑖𝑡−1)] and ∅2(𝑡) = 𝑒[𝜆2(𝑒

𝑖𝑡−1)] 

Let 𝑋 = 𝑋1 + 𝑋2. 

Let ∅(𝑡) be the characteristic ∅ function of 𝑋. 

Since 𝑋1 and 𝑋2 are independent random variable. 

∴ ∅(𝑡) = ∅1(𝑡)∅2(𝑡) = 𝑒[𝜆1(𝑒
𝑖𝑡−1)]𝑒[𝜆2(𝑒

𝑖𝑡−1)]  

𝑖. 𝑒. , ∅(𝑡) = 𝑒(𝜆1+𝜆2)(𝑒
𝑖𝑡−1)  

which is a characteristic function of the random variable with Poisson 

distribution having the expected value 𝜆1 + 𝜆2. 

Hence the proof. 

 

4.6. The Uniform Distribution  

 

Definition.  
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 The random variable 𝑋 has a uniform or rectangular distribution if its 

density function 𝑓(𝑥) is given by the formula 

𝑓(𝑥) = {
1

2ℎ
       𝑓𝑜𝑟 𝑎 − ℎ ≤ 𝑥 ≤ 𝑎 + ℎ, 𝑤ℎ𝑒𝑟𝑒 𝑎 𝑎𝑛𝑑 ℎ ≥ 0 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠.

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                              
   

The distribution function 𝐹(𝑥) of this random variable is given by the formula 

𝐹(𝑥) =

{
 

 
0                              𝑓𝑜𝑟  𝑥 < 𝑎 − ℎ

1

2
∫ 𝑑𝑥 =

𝑥 − (𝑎 − ℎ)

2ℎ

𝑥

𝑎−ℎ

𝑓𝑜𝑟 𝑎 − ℎ ≤ 𝑥 ≤ 𝑎 + ℎ

1                            𝑓𝑜𝑟 𝑥 > 𝑎 + ℎ

 

The characteristic function of 𝑋 is 

∅(𝑡) = ∫𝑒𝑖𝑡𝑋𝑑𝑥  

 =
1

2ℎ
∫ 𝑒𝑖𝑡𝑥𝑑𝑥
𝑎+ℎ

𝑎−ℎ
=

1

2ℎ
(
𝑒𝑖𝑡𝑥

𝑖𝑡
)
𝑎−ℎ

𝑎+ℎ

=
1

2ℎ

𝑒𝑖𝑡(𝑎+ℎ)−𝑒𝑖𝑡(𝑎−ℎ)

𝑖𝑡
 

 =
1

2ℎ

𝑒𝑖𝑡𝑎[𝑒𝑖𝑡ℎ−𝑒−𝑖𝑡ℎ]

𝑖𝑡
=

1

2ℎ

𝑒𝑖𝑡𝑎[cos𝑡ℎ+𝑖𝑠𝑖𝑛𝑡ℎ−𝑐𝑜𝑠𝑡ℎ+𝑖𝑠𝑖𝑛𝑡ℎ]

𝑖𝑡
 

 =
𝑒𝑖𝑡𝑎

2ℎ

2𝑖𝑠𝑖𝑛𝑡ℎ

𝑖𝑡
 

∅(𝑡) =
𝑒𝑖𝑡𝑎𝑠𝑖𝑛𝑡ℎ

𝑡ℎ
 . 

Moment: 

 𝑚𝑘 = 𝐸(𝑋𝑘) 

        = ∫ 𝑥𝑘 𝑓(𝑥)𝑑𝑥  

        =
1

2ℎ
∫ 𝑥𝑘𝑑𝑥
𝑎+ℎ

𝑎−ℎ
 s 

        =
1

2ℎ
(
𝑥𝐾+1

𝑘+1
)
𝑎−ℎ

𝑎+ℎ

  

        =
1

2ℎ

(𝑎+ℎ)𝑘+1−(𝑎−ℎ)𝐾+1

𝑘+1
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𝑚1 =
1

2ℎ

(𝑎+ℎ)2−(𝑎−ℎ)2

2
  

        =
1

2ℎ

𝑎2+ℎ2+2ℎ𝑎−𝑎2−ℎ2+2𝑎ℎ

2
  

 =
1

2ℎ

4𝑎ℎ

2
= 𝑎  

𝑖. 𝑒. , 𝑚1 = 𝑎  

𝑚2 =
1

2ℎ

(𝑎+ℎ)3−(𝑎−ℎ)3

3
  

        =
1

6ℎ
[𝑎3 + ℎ3 + 3𝑎2ℎ + 3𝑎ℎ2 − (𝑎3 − ℎ3 − 3𝑎2ℎ + 3𝑎ℎ2)]   

=
1

6ℎ
[𝑎3 + ℎ3 + 3𝑎2ℎ + 3𝑎ℎ2 − 𝑎3 + ℎ3 + 3𝑎2ℎ − 3𝑎ℎ2]  

=
1

6ℎ
[2ℎ3 + 6𝑎2ℎ] =

1

6ℎ
× 2ℎ[ℎ2 + 3𝑎2]  

𝑖. 𝑒., 𝑚2 =
1

3
(ℎ2 + 3𝑎2)  

𝜇1 = 0  

𝜇2 = 𝑚2 −𝑚1
2 =

1

3
(ℎ2 + 3𝑎2) − 𝑎2 =

1

3
ℎ2  

𝑖. 𝑒., 𝜇2 =
1

3
ℎ2. 

 

4.7. The Normal Distribution 

 

Definition. 

The random variable 𝑋 has a normal distribution if its density function is  

 𝑓(𝑥) =
1

𝜎 √2𝜋
𝑒
−(𝑥−𝑚)2

2𝜎2 , where 𝜎 > 0. 
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Problem 1.  

Prove that 𝑓(𝑥) =
1

𝜎√2𝜋
𝑒
−(𝑥−𝑚)2

2𝜎2  is a density function and derive 

characteristic function. 

Proof. 

 𝑓(𝑥) =
1

𝜎√2𝜋
𝑒
−(𝑥−𝑚)2

2𝜎2  

 ∫ 𝑓(𝑥)𝑑𝑥 
∞ 

−∞
=

1

𝜎√2𝜋
∫ 𝑒

−(𝑥−𝑚)2

2𝜎2 𝑑𝑥
∞ 

−∞
 

Put 𝑌 =
𝑋−𝑚

𝜎
 

 𝑑𝑦 =
𝑑𝑥

𝜎
 

 
1

𝜎√2𝜋
∫ 𝑒

−(𝑥−𝑚)2

2𝜎2
∞

∞
𝑑𝑥 =

1

√2𝜋
∫ 𝑒−

𝑦2

2  
∞ 

−∞
𝑑𝑦 

    = 1 

 ∴ ∫ 𝑓(𝑥)𝑑𝑥 
∞ 

−∞
= 1 

Hence, 𝑓(𝑥) is a density function. 

Let the characteristic function of 𝑌 be ∅(𝑡) 

 ∅(𝑡) = 𝑒−
𝑡2

2  

Then, the characteristic function of 𝑋 is 

 ∅1(𝑡) = 𝑒𝑖𝑚−
1

2
𝜎2𝑡2

 

Clearly,  

 𝑚1 = 𝑚;𝑚2 = 𝜎2 +𝑚2 

 𝜇2 = 𝜎
2 
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where 𝑚 is the expected value of 𝑋 and 𝜎 is the standard deviation. 

 

 

Remark.  

1. The shape of the curve of the density of the normal distribution depends on 

the parameter 𝜎; this curve is called normal curve. It is illustrated in figure, 

representing three normal distributions with the same expected value 𝑚 =

0 and different standard deviations: 𝜎 = 1, 𝜎 = 0.5 and 𝜎 = 0.25. 

2. The normal distribution with expected value 𝑚 and standard deviation 𝜎 is 

denoted by 𝑁(𝑚, 𝜎). 

3. By the symmetry of the normal curve with respect to the expected value 𝑚 

all the central moments of odd order vanish 

𝜇2𝑘+1 = 0   ∀𝑘. 

4. 𝜇2𝑘 = 1.3……(2𝑘 − 1)𝜎2𝑘      (𝑤𝑒 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑝𝑟𝑜𝑣𝑒𝑑) 

5. 𝑃(|𝑋 − 𝑚| > 𝜆𝜎) =
2

√2𝜋
∫ 𝑒−

𝑦2

2 𝑑𝑦 
∞ 

𝜆
 

𝑃(|𝑋 − 𝑚| > 𝜆𝜎) = 𝑃 (
|𝑋 − 𝑚|

𝜎
> 𝜆) = 𝑃(|𝑌| > 𝜆) 

where 𝑌 =
𝑋−𝑚

𝜎
 

 𝑃(𝑋 > 𝑚 + 𝜆𝜎) = 𝑃(𝑌 > 𝜆) =
1

√2𝜋
∫ 𝑒−

𝑦2

2 𝑑𝑦 
∞ 

𝜆
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Figure 4.7.1 

Problem 2.  

The random variable 𝑋 has the distribution 𝑁(1,2). Find the probability 

that 𝑥 is greater than 3 in absolute value. 

Solution. 

To find 𝑃(|𝑥| > 3) 

We have the random variable 𝑌 =
𝑋−𝑚

𝜎
  

Since  𝑋~𝑁(1,2), the random variable becomes 𝑌 =
𝑋−1

2
   

Then  

𝑃(|𝑋| > 3 ) = 𝑃(|2𝑌 + 1| > 3)  
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                    = 𝑃 (|𝑌 +
1

2
| >

3

2
)          (∵

𝑌 =
𝑥−1

2

2𝑌 + 1 = 𝑥
)      

   (∵ |𝑌 +
1

2
| = {− (𝑌 +

1

2
) + (𝑌 +

1

2
) 

                        = 𝑃 (−(𝑌 +
1

2
) >

3

2
) + 𝑃 ((𝑌 +

1

2
) >

3

2
) 

                       = 𝑃 (𝑌 +
1

2
<  −

3

2
) + 𝑃 (𝑌 +

1

2
>
3

2
) 

                       = 𝑃 (𝑌 < −
3

2
−
1

2
) + 𝑃 (𝑌 >

3

2
−
1

2
) 

i.e., 𝑃(|𝑋| > 3 ) = 𝑃(𝑌 < −2) + 𝑃(𝑌 > 1)   → (1) 

By the definition of Y, we have 

𝑃(𝑌 > 1) =
1

√2𝜋
∫ 𝑒−

𝑡2

2
∞

1
𝑑𝑡 ≅ 0.159 → (2)   (𝑓𝑟𝑜𝑚 𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑎𝑏𝑙𝑒)  

𝑃(𝑌 < −2) = 1 − 𝑃(𝑌 > 2)  

  = 1 −
1

√2𝜋
 ∫ 𝑒−

𝑡2

2
∞

2
𝑑𝑡 

  = 1 − 0.977250  (𝑓𝑟𝑜𝑚 𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑎𝑏𝑙𝑒) 

  = 0.02275 

𝑃(𝑌 < 2) ≃ 0.023  → (3)  

From (2) & (3)  

(1) ⇒ 𝑃(|𝑋| > 3) = 0.023 + 0.159 

𝑃(|𝑋| > 3) = 0.182. 

Remark.  

1. From the normal table for the above problem 

𝑃(|𝑋 − 𝑚| > 𝜎 ≅ 0.3173  



 

 

179 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

𝑃(|𝑋 − 𝑚| > 2𝜎 ≅ 0.0455  

𝑃(|𝑋 − 𝑚| > 3𝜎) ≅ 0.0027  

The normal distribution is highly concentration around its expected value. The 

probability the value of 𝑋 differs from the expected value by more than 3𝜎 is 

smaller than 0.01. 

This is called 3-sigma rule (or) three-sigma rule. 

 

Theorem 4.7. (Addition theorem for normal distribution).  

If X and Y are two independent random variables and 

X~𝑁(𝑚, 𝜎) and 𝑌~𝑁(𝑚2, 𝜎2). Then 𝑍 = 𝑋 + 𝑌 also has a normal distribution. 

Proof. 

Given, 𝑋~𝑁(𝑚, 𝜎1) and 𝑌~𝑁(𝑚, 𝜎2) 

The characteristic function of 𝑋 and 𝑌 are 

∅1(𝑡) = 𝑒𝑚1𝑖𝑡−
1

2
𝑡2𝜎1

2

, ∅2(𝑡) = 𝑒𝑚2𝑖𝑡−
1

2
𝑡2𝜎2

2

 

Let ∅(𝑡) be the characteristic function of 𝑍.Then 

 ∅(𝑡) = ∅1(𝑡)∅2(𝑡)                  (∵ 𝑋1&𝑋2 are independent) 

  = 𝑒𝑚1𝑖𝑡−
1

2
𝑡2𝜎1

2

. 𝑒𝑚2𝑖𝑡−
1

2
𝑡2𝜎2

2

 

 𝑖. 𝑒. , ∅(𝑡) = 𝑒(𝑚1+𝑚2)𝑖𝑡−
1

2
𝑡2(𝜎1

2+𝜎2
2) 

 

This the characteristic function of the normal distribution 𝑁 (𝑚1 +

𝑚2, √𝜎1
2 + 𝜎2

2)  

∴ 𝑋~𝑁 (𝑚1 +𝑚2, √𝜎1
2 + 𝜎2

2)  
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4.8. The Gamma Distribution 

Gamma distribution defined for 𝑝 > 0 

 Γ(𝑝) = ∫ 𝑥𝑃−1𝑒−𝑥 𝑑𝑥
∞

0
 … (1) 

(1) is uniformly converges with respect to 𝑝 and Γ(𝑝) is continuous function. 

Integrating (1) by parts, we obtain 

Γ(𝑝 + 1) = ∫ 𝑥𝑃𝑒−𝑥 𝑑𝑥
∞

0
  

 = (−𝑥𝑝𝑒−𝑥)0
∞ + ∫ 𝑝𝑒−𝑥𝑥𝑃−1 𝑑𝑥

∞

0
 

 = 0 + 𝑝Γ𝑝 

Γ(𝑝 + 1) = 𝑝Γ𝑝 …(2) 

If 𝑝 = 𝑛 , where 𝑛 is an integer, we obtain from (2) 

Γ(𝑛 + 1) = 𝑛Γ𝑛  

Γ(𝑛) = (𝑛 − 1)Γ(𝑛 − 1)
.
.

  

Γ(2) = 1Γ(1)  

Since Γ(1) = ∫ 𝑒−𝑥 𝑑𝑥
∞

0
= −[𝑒−𝑥]0

∞ = 1 

∴ Γ(𝑛) = 𝑛(𝑛 − 1)…… .1. 

Γ(𝑛 + 1) = 𝑛!  

 

Remark.  

Substitute 𝑦 =
𝑥

𝑎
, (𝑎 > 0)  𝑖𝑛 (1) 

 Γ(𝑝) = ∫ (𝑦𝑎)𝑝−1
∞

0
𝑒−𝑎𝑦(𝑎𝑑𝑦) 
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  = 𝑎𝑃 ∫ 𝑦𝑝−1
∞

0
𝑒−𝑎𝑦𝑑𝑦 

 
Γ(𝑝)

𝑎𝑝
= ∫ 𝑦𝑝−1

∞

𝑒
𝑒−𝑎𝑦𝑑𝑦      → (3) 

Equation (2) is also valid when 𝑎 is complex number 𝑎 = 𝑏 + 𝑖𝑐 where 𝑏 > 0. 

 

Definition. 

The random variable 𝑋 has a gamma distribution if its density function is  

𝑓(𝑥) = {

0                            𝑓𝑜𝑟  𝑥 ≤ 0 

𝑏𝑝

Γ(𝑝)
 𝑥𝑃−𝑖𝑒−𝑏𝑥    𝑓𝑜𝑟 𝑥 > 0

           → (1) 

where 𝑏 > 0 𝑎𝑛𝑑 𝑝 > 0 

∫ 𝑓(𝑥)𝑑𝑥
∞

∞

= ∫
𝑏𝑝

Γ(𝑝)
 𝑥𝑃−1𝑒−𝑏𝑥

∞

0

 𝑑𝑥 =
𝑏𝑝

𝛤(𝑝)
 ∫ 𝑥𝑃−1𝑒−𝑏𝑥

∞

0

 

and 𝑓(𝑥) is non-negative function. 

 

The characteristic function of gamma distribution: 

We have ∅(𝑡) = ∫ 𝑒𝑖𝑡𝑥𝑓(𝑥)𝑑𝑥
∞

−∞
  

 = ∫  𝑒𝑖𝑡𝑥
𝑏𝑝

𝛤(𝑝)
 𝑥𝑃−1𝑒−𝑏𝑥𝑑𝑥

∞

0
 

𝑖. 𝑒. , ∅(𝑡) =
𝑏𝑝

𝛤(𝑝)
 ∫ 𝑥𝑝−1𝑒−(𝑏−𝑖𝑡)𝑥

∞

0

𝑑𝑥    … (1) 

We know that, 
Γ(𝑝)

𝑎𝑝
= ∫ 𝑦𝑝−1

∞

0
𝑒−𝑎𝑦𝑑𝑦 is valid when 𝑎 = 𝑏 + 𝑖𝑐 where 𝑏 > 0, 

∫ 𝑥𝑝−1
∞

0
𝑒−(𝑏−𝑖𝑡)𝑥𝑑𝑥 =

Γ(𝑝)

(𝑏−𝑖𝑡)𝑝
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(1) ⇒ ∅(𝑡) =
𝑏𝑝

𝛤(𝑝)
× 

Γ(𝑝)

(𝑏−𝑖𝑡)𝑝
=

𝑏𝑝

(𝑏−𝑖𝑡)𝑝
=

1

(1−
𝑖𝑡

𝑏
)
𝑝 

𝑖. 𝑒. , ∅(𝑡) =
1

(1−
𝑖𝑡

𝑏
)
𝑝  

Now, 

∅(𝑡) =
1

(1−
𝑖𝑡

𝑏
)
𝑝 = (1 −

𝑖𝑡

𝑏
)
−𝑝

  

∅′(𝑡) = −𝑝 (1 −
𝑖𝑡

𝑏
)
−𝑝−1

(
−𝑖

𝑡
)  

∅′(𝑡) =
𝑝𝑖

𝑏(1−
𝑖𝑡

𝑏
)
𝑝+1  

∅′′(𝑡) = (−𝑝)(−(𝑝 + 1)) (1 −
𝑖𝑡

𝑏
)
−𝑝−2

(−
𝑖

𝑏
)
2
  

∅′′(𝑡) =
(𝑖)2𝑝(𝑝+1)

𝑏2(1−
𝑖𝑡

𝑏
)
𝑝+2  

∅𝑘(𝑡) =
𝑝(𝑝+1)……(𝑝+(𝑘−1))𝑖𝑘

𝑏𝑘(1−
𝑖𝑡

𝑏
)
𝑝+𝑘    

∴  ∅𝑘(0) =
𝑝(𝑝+1)…….(𝑝+(𝑘−1))𝑖𝑘

𝑏𝑘
  

𝑚𝑘 =
∅𝑘(0)

𝑖𝑘
=

𝑝(𝑝+1)…….(𝑝+(𝑘−1))𝑖𝑘

𝑏𝑘𝑖𝑘
  

∴ 𝑚𝑘 =
𝑝(𝑝+1)…….(𝑝+(𝑘−1))

𝑏𝑘
 . 

 In particular, we have 

𝑚1 =
𝑝

𝑏
,𝑚2 =

𝑝(𝑝 + 1)

𝑏2
, 𝜇2 =

𝑝

𝑏2
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Example. 

The random variable X has the gamma distribution with the density given 

by the formula 

𝐹(𝑥) = {
0  𝑓𝑜𝑟 𝑥 ≤ 0

2𝑒−2𝑥   𝑓𝑜𝑟 𝑥 > 0
  

What is the probability that 𝑋 is not smaller than two? 

Solution. 

𝑃(𝑋 ≥ 2) = ∫ 𝑓(𝑥)𝑑𝑥
∞

2
   

  = ∫ 2𝑒−2𝑥
∞

2
𝑑𝑥 = 𝑒 (

𝑒−2𝑥

−2
)
2

∞

  

  = (−0 + 𝑒−4) ≅ 0.0183  

 

Definition. 

The random variable with density 𝑓(𝑥), defined by  

 𝑓(𝑥) = {
0          𝑓𝑜𝑟 𝑥 ≤ 0

𝜆𝑒−𝜆𝑥  𝑓𝑜𝑟  𝑥 > 0
  

where, 𝜆 > 0, has an exponential distribution. 

 

Theorem 4.8. (Addition theorem for random variable with gamma 

distribution) 

 Let 𝑋 = 𝑋1 + 𝑋2, where 𝑋1, 𝑋2 are independent variables with gamma 

distribution then 𝑋 is also has the gamma distribution. 

Proof. 

Let 𝑋1 & 𝑋2 be two independent random variables with gamma distribution. 
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Let ∅1(𝑡), ∅2(𝑡) are the characteristic function 𝑋1 and 𝑋2 respectively. 

i.e., ∅!(𝑡) =
1

(1−
𝑖𝑡

𝑏
)
𝑝1 ; ∅2(𝑡) =

1

(1−
𝑖𝑡

𝑏
)
𝑝2  

Let ∅(𝑡) be the characteristic function of 𝑋 

∅(𝑡) = ∅1(𝑡)∅2(𝑡)  

 =
1

(1−
𝑖𝑡

𝑏
)
.

1

(1−
𝑖𝑡

𝑏
)
                       (∵ 𝑋1 & 𝑋2 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡) 

∅(𝑡) =
1

(𝑖−
𝑖𝑡

𝑏
)
𝑝1+𝑝2  

∴ 𝑋 has the gamma distribution. 

 

Theorem 4.9. 

 Let the independent random variables 𝑋 and 𝑌 with non-independent 

distributions take on only positive values. Then 𝑋 and 𝑌 have the gamma 

distribution with the same parameter 𝑏 iff the random variables 𝑈 and 𝑉, where 

𝑈 = 𝑋 + 𝑌; 𝑉 =
𝑋

𝑌
 are independent. 

 

4.9. The Beta distribution 

 

sNote that, 

1. 𝛽(𝑝, 𝑞) = ∫ 𝑥𝑝−1(1 − 𝑥)𝑞−1
1

0
𝑑𝑥    𝑤ℎ𝑒𝑟𝑒 𝑝 > 0, 𝑞 < 0 

2. 𝛽(𝑝, 𝑞) =
𝛤(𝑝)𝛤(𝑞)

𝛤(𝑝+𝑞)
 

Definition. 

The random variable 𝑋 has a beta distribution if its density is  
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  𝑓(𝑥) = {

1

𝛽(𝑝,𝑞)
𝑥𝑝−1(1 − 𝑥)𝑞−1 𝑓𝑜𝑟 0 < 𝑥 < 1        

0                       𝑓𝑜𝑟 𝑥 ≤ 0 𝑎𝑛𝑑 𝑥 ≥ 1          
 

where, 𝑝 > 0, 𝑞 < 0. 

 

Theorem 4.10. 

 Find the moments of the beta distribution 

Proof. 

 𝑚𝑘 = ∫𝑥
𝑘𝑓(𝑥)𝑑𝑥 

 𝑚𝑘 = ∫ 𝑥𝑘
1

𝛽(𝑝,𝑞)
𝑥𝑝−1(1 − 𝑥)𝑞−1

1

0
𝑑𝑥     

  =
1

𝛽(𝑝,𝑞)
∫ 𝑥𝑝+𝑘−1(1 − 𝑥)𝑞−1
1

0
𝑑𝑥 

  =
𝛤(𝑝+𝑞)

𝛤(𝑝)𝛤(𝑞)
× 𝛽(𝑝 + 𝑘, 𝑞) 

  =
𝛤(𝑝+𝑞)

𝛤(𝑝)𝛤(𝑞)
×
𝛤(𝑝+𝑘) 𝛤(𝑞)

𝛤(𝑝+𝑘+𝑞)
 

  =
𝛤(𝑝+𝑞) 𝛤(𝑝+𝑘)

𝛤(𝑝) 𝛤(𝑝+𝑞+𝑘)
 

  =
𝛤(𝑝+𝑞) 𝑝 (𝑝+1)(𝑝+2)………(𝑝+𝑘−1)𝛤(𝑝)

𝛤(𝑝)(𝑝+𝑞+𝑘−1)………(𝑝+𝑞+2)(𝑝+𝑞+1)(𝑝+𝑞)𝛤(𝑝+𝑞)
 

 ∴ 𝑚𝑘 =
𝑃(𝑝+1)……..(𝑝+𝑘−1)

(𝑝+𝑞)(𝑝+𝑞+1)……..(𝑝+𝑞+𝑘−1)
 

In particular, 

 𝑚1 =
𝑝

𝑝+1
;𝑚2 =

𝑝(𝑝+1)

(𝑝+𝑞)(𝑝+𝑞+1)
 

 𝜇2 = 𝑚2 −𝑚1
2 

  =
𝑝(𝑝+1)

(𝑝+𝑞)(𝑝+𝑞+1)
−

𝑝2

(𝑝+𝑞)2
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  =
𝑝(𝑝+1)(𝑝+𝑞)−𝑝2(𝑝+𝑞+1)

(𝑝+𝑞)2(𝑝+𝑞+1)
 

  =
(𝑝2+𝑝)(𝑝+𝑞)−𝑝3−𝑝2𝑞−𝑝2

(𝑝+𝑞)2(𝑝+𝑞+1)
 

  =
𝑝3+𝑝2𝑞+𝑝2+𝑝𝑞−𝑝3−𝑝2𝑞−𝑝2

(𝑝+𝑞)2(𝑝+𝑞+1)
 

 

Remark. 

 The density of the beta distribution with 𝑝 = 𝑞 = 2 represent as follow as 

in note 1 given above. 

 

Example.  

 The random variable 𝑋 has the beta distribution with 𝑝 = 𝑞 = 2; hence its 

density 𝑓(𝑥) is 

𝑓(𝑥) =  {

0                                   𝑓𝑜𝑟 𝑥 ≤ 0  𝑥 ≥ 1
Γ(4)

Γ(2)Γ(2)
𝑥(1 − 𝑥)   𝑓𝑜𝑟 0 < 𝑥 < 1     

    

i.e., 𝑓(𝑥) = {
0                  𝑓𝑜𝑟 𝑥 ≤ 0 𝑥 ≥ 1

6𝑥(1 − 𝑥)  𝑓𝑜𝑟 0 < 𝑥 < 1   
 .What is the probability that 𝑋 is not 

greater than 0.2? 

Solution. 

 𝑝(𝑥 ≤ 0.2) = ∫ 𝑓(𝑥)𝑑𝑥 
0.2 

0
 

   = ∫ 6𝑥(1 − 𝑥)𝑑𝑥 
0.2 

0
 

   = 6 [
𝑥2

2
−
𝑥3

3
]
0

0.2
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   = 6 [
(0.2)2

2
−
(0.2)3

3
] 

 𝑃(𝑋 ≤ 0.2) = 0.104. 

 

4.10. The Cauchy and Laplace distributions 

Definition. 

The random variable 𝑋 has a Cauchy distribution if its density is  

 𝑓(𝑥) =
1

𝜋

𝜆

𝜆2+(𝑥−𝜇)2
 ,where 𝜆 > 0 

The function 𝑓(𝑥) is non-negative. 

By substituting  𝑦 =
𝑥−𝜇

𝜆
, we obtain 

 ∫ 𝑓(𝑥)𝑑𝑥 
∞ 

−∞
=

1

𝜋
∫

𝑑𝑥

𝜆2+(𝑥−𝜇)2

∞ 

−∞
 

   =
1

𝜆2
1

𝜋
 ∫

𝑑𝑥

1+(
𝑥−𝜇

𝜆
)
2

∞ 

−∞
 

   =
1

𝜆2
1

𝜋
 ∫

𝜆𝑑𝑦

(1+𝑦2)
 

∞ 

−∞
       (since 𝑦 =

𝑥−𝜇

𝜆
 

       𝑑𝑦 =
𝑑𝑥

𝜆
 

       ⇒ 𝑑𝑥 = 𝜆𝑑𝑦) 

 

   =
1

𝜋
[
1

𝜆
∫

𝑑𝑦

(1+𝑦2)

∞ 

−∞
] 

   =
1

𝜋
[tan−1 𝑦]∞

∞ 

   =
1

𝜋
[
𝜋

2
+
𝜋

2
] 
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   =
1

𝜋
× 𝜋 = 1                     

  ∴ ∫ 𝑓(𝑥)𝑑𝑥 
∞ 

−∞

= 1 

The characteristic function of 𝒀 

𝑌 has the density function 

 𝑓(𝑦) =
1

𝜋
 

1

1+𝑦2
 

The characteristic function of 𝑌 is 

 ∅(𝑡) = ∫ 𝑒𝑖𝑡𝑦𝑓(𝑦)𝑑𝑦
∞ 

−∞
 

 ∅(𝑡) =
1

𝜋
∫ 𝑒𝑖𝑡𝑦

1

1+𝑦2
𝑑𝑦

∞ 

−∞
… . (𝐼) 

Consider the first density function 𝑓1(𝑦) =
1

2
𝑒−|𝑦| → (1) 

Find the characteristic function for this density function is 

 ∅1(𝑡) = ∫ 𝑒𝑖𝑡𝑦𝑓1(𝑦)𝑑𝑦 
∞ 

−∞
 

  =
1

2
∫ 𝑒𝑖𝑡𝑦𝑒−|𝑦|𝑑𝑦 
∞ 

−∞
 

  =
1

2
∫ (𝑐𝑜𝑠𝑡𝑦 + 𝑖𝑠𝑖𝑛𝑡𝑦)𝑒−|𝑦|
∞ 

−∞
𝑑𝑦 

 ∅1(𝑡) =
1

2
× 2∫ 𝑐𝑜𝑠𝑡𝑦 𝑒−𝑦𝑑𝑦    (∵ 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

∞ 

0
 

  = [−𝑒−𝑦]0
∞ − 𝑡 ∫ 𝑠𝑖𝑛𝑡𝑦 𝑒−𝑦 𝑑𝑦 

∞ 

0
 

  = 1 − 𝑡 ∫ 𝑠𝑖𝑛𝑡𝑦 𝑒−𝑦𝑑𝑦 
∞ 

0
 

  = 1 − 𝑡 {[−𝑒−𝑦𝑠𝑖𝑛𝑡𝑦]0
∞ + 𝑡 ∫ 𝑒−𝑦𝑐𝑜𝑠𝑡𝑦𝑑𝑦 

∞ 

0
} 

  = 1 − 𝑡2 ∫ 𝑒−𝑦𝑐𝑜𝑠𝑡𝑦𝑑𝑦
∞ 

0
 



 

 

189 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

∅1(𝑡) = ∫ 𝑒−𝑦𝑐𝑜𝑠𝑡𝑦𝑑𝑦
∞ 

0
= 1 − 𝑡2 ∫ 𝑒−𝑦𝑐𝑜𝑠𝑡𝑦𝑑𝑦

∞ 

0
  

 ⇒ 𝑡2 ∫ 𝑒−𝑦𝑐𝑜𝑠𝑡𝑦𝑑𝑦
∞ 

0
+ ∫ 𝑒−𝑦𝑐𝑜𝑠𝑡𝑦𝑑𝑦

∞ 

0
= 1 

 ⇒ (1 + 𝑡2) ∫ 𝑒−𝑦𝑐𝑜𝑠𝑡𝑦𝑑𝑦
∞ 

0
= 1 

 ⇒ ∫ 𝑒−𝑦𝑐𝑜𝑠𝑡𝑦𝑑𝑦
∞ 

0
=

1

1+𝑡2
 

 ⇒ ∅1(𝑡) =
1

1+𝑡2
 

The density is  

 𝑓1(𝑦) =
1

2𝜋
∫ 𝑒𝑖𝑡𝑦 ∅1(𝑡)𝑑𝑡
∞ 

−∞
 

 𝑓1(𝑦) =
1

2𝜋
∫

𝑒−𝑖𝑡𝑦

1+𝑡2

∞ 

−∞
𝑑𝑡     → (2) 

From (1) & (2), 

1

2
𝑒−|𝑦| =

1

2𝜋
∫

𝑒−𝑖𝑡𝑦

1+𝑡2

∞ 

−∞
𝑑𝑡       

𝑒−|𝑦| =
1

𝜋
∫

𝑒−𝑖𝑡𝑦

1+𝑡2

∞ 

−∞
𝑑𝑡       

Changing 𝑒−𝑖𝑡𝑦 into 𝑒𝑖𝑡𝑦 under the integral sign (this doesnot affect the value of 

the integral) and changing the roles of 𝑡 and 𝑦, we obtain 

 𝑒−|𝑡| =
1

𝜋
∫

𝑒−𝑖𝑡𝑦

1+𝑦2

∞ 

−∞
𝑑𝑦   → (3) 

The R.H.S of (I) and (3) are same. 

 ∴ ∅(𝑡) = 𝑒−|𝑡| 

Since 𝑋 is a linear transformation of 𝑌, for the characteristic function ∅2(𝑡) of 𝑋 

we obtain the formula 

 ∅2(𝑡) = 𝑒
𝑖𝜇𝑡−𝜆|𝑡| 
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Theorem 4.11. (Addition theorem for the Cauchy distribution).  

Let 𝑋1 and 𝑋2 be two independent random variables with Cauchy 

distribution then 𝑋 = 𝑋1 + 𝑋2 also has Cauchy distribution. 

Proof. 

Let 𝑋1 and 𝑋2 be two independent random variables with densities. 

 𝑔1(𝑥) =
1

𝜋

𝜆1

𝜆1
2+(𝑥−𝜇1)2

;    𝑔2(𝑥) =
1

𝜋

𝜆2

𝜆2
2+(𝑥−𝜇2)2

 (𝜆1, 𝜆2 > 0) 

The characteristic function of 𝑋1 and 𝑋2 are 

𝜓1(𝑡) = 𝑒𝑖𝜇1𝑡−𝜆1|𝑡|; 𝜓2(𝑡) = 𝑒
𝑖𝜇2𝑡−𝜆2|𝑡| 

respectively. 

Consider the random variable 𝑋 = 𝑋1 + 𝑋2 

Let 𝜓(𝑡) be the characteristic function of 𝑋. Then 

 𝜓(𝑡) = 𝜓1(𝑡) 𝜓2(𝑡)    (𝑠𝑖𝑛𝑐𝑒, 𝑋1 & 𝑋2  𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡) 

  = 𝑒𝑖𝜇1𝑡−𝜆1|𝑡| . 𝑒𝑖𝜇2𝑡−𝜆2|𝑡| 

𝜓1(𝑡) = 𝑒𝑖(𝜇1+𝜇2)𝑡−(𝜆1+𝜆2) |𝑡|  

which is also characteristic function of Cauchy distribution. 

 

Remark. 

𝑋 has a Laplace distribution if 𝑋 = 𝜆𝑌 + 𝜇,  where 𝑌 has the density function 

𝑓1(𝑦) =
1

2
𝑒−|𝑦|. 

∴ The density function of 𝑋 is 

 𝑓(𝑥) =
1

2𝜆
 𝑒(

−|𝑥−𝜇|

𝜆
) (𝜆 > 0) 
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The characteristic function of 𝑋 is 

 ∅(𝑡) =
𝑒𝑖𝜇𝑡

1+𝜆2𝑡2
 

Random variable with a Laplace distribution has moments of any order. 
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UNIT – V 

LIMITS THEOREMS 
 

5.1. Stochastic Convergence 

 

Example 1 

 The random variable 𝑌𝑛 can take on the value 0,
1

𝑛
,
2

𝑛
, … . ,

𝑛−1

𝑛
, 1 and its 

probability function is given by the formula 

 𝑃 (𝑌𝑛 =
𝑟

𝑛
) = (

𝑛
𝑟
)
1

2𝑛
 (𝑟 = 0,1, … . . , 𝑛) 

Consider the random variable 𝑋𝑛 defined by the formula 

 𝑋𝑛 = 𝑌𝑛 −
1

2
. 

Thus 𝑋𝑛 can take on the values 

 −
1

2
,
2−𝑛

2𝑛 
,
4−𝑛

2𝑛
, … . . ,

𝑛−4

2𝑛
,
𝑛−2

2𝑛
,
1

2
 

The probability function of 𝑋𝑛 is given by the formula 

𝑃 (𝑋𝑛 =
2𝑟 − 𝑛

2𝑛
) = (

𝑛
𝑟
)
1

2𝑛
 

Let 𝑛 = 2. The random variable can take on the values 

 −0.5,0,0.5 

with respective probabilities 

 
1

4
,
1

2
,
1

4
. 

Let 𝜀 be a positive number, say 𝜀 = 0.3 
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𝑃(|𝑋2| > 0.3 = 𝑃 (𝑋2 =
−1

2
) + 𝑃 (𝑋2 =

1

2
) = 0.5  

Let 𝑛 = 5. The random variable 𝑋5 can take on the values 

 −0.5, −0.3,−0.1,0.1,0.3,0.5 

with respective probabilities 

1

32
,
5

32
,
10

32
,
10

32
,
5

32
,
1

32
 

Hence  

𝑃(|𝑋5|) > 0.3 = 0.0625 

 

Let 𝑛 = 10. The random variable 𝑋10 can take on the values 

−0.5,−0.4,−0.3, −0.2, −0.1,0.0,0.1,0.2,0.3,0.4,0.5 

with respective probabilities 

 
1

1024
,
10

1024
,
45

1024
,
120

1024
,
210

1024
,
252

1024
,
120

1024
,
45

1024
,
10

1024
,

1

1024
 

𝑃(|𝑋10| > 0.3 ≅ 0.02 . 

For 𝑛 = 10,  the probability that 𝑋𝑛 will exceed 𝜀 = 0.3/𝑛 absolute value is very 

small. 

 

Definition. 

The sequence {𝑋𝑛} of random variable is called stochastically convergent 

to zero if for every 𝜀 > 0 the relation  

lim
𝑛→∞

𝑃(|𝑋𝑛| > 𝜀 = 0 

is satisfied. 
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Theorem 5.1. 

 Let 𝐹𝑛(𝑥)(𝑛 = 1,2,3, … . ) be the distribution function of the random 

variable 𝑋𝑛. The sequence {𝑋𝑛} is stochastically convergent to zero iff the 

sequence {𝐹𝑛(𝑥)} satisfies the relation 

 lim
𝑛→∞

𝐹𝑛(𝑥) = {
0     𝑓𝑜𝑟 𝑥 ≤ 0   
1     𝑓𝑜𝑟 𝑥 > 0    

 

  Proof. 

Suppose that the sequence {𝑋𝑛} is stochastically convergent to zero. 

∴ lim
𝑛→∞

𝑃(|𝑋𝑛| > 𝜀 = 0         → (1)  ∀𝜀 > 0  

For every 𝜀 > 0,  

lim
𝑛→∞

𝑃(𝑋𝑛 < 𝜀) = 0   

lim
𝑛→∞

𝐹𝑛(−𝜀) = 0   → (𝐴)  

lim
𝑛→∞

𝑃(𝑋𝑛 > 𝜀)  = 1 − 𝑃(𝑋𝑛 < 𝜀) − 𝑃(𝑋𝑛 = 𝜀)  

𝑃(𝑋𝑛 > 𝜀) = 1 − 𝑃(𝑋𝑛 < 𝜀) − 𝑃(𝑋𝑛 = 𝜀)  

𝑃(𝑋𝑛 > 𝜀) = 1 − 𝐹𝑛(𝜀) − 𝑃(𝑋𝑛 = 𝜀)  → (2)  

 Since, for every 𝜀 > 0,  we can find an 𝜀1such that 0 < 𝜀1 < 𝜀 

From (1), for an arbitrary 𝜀 > 0, we have 

lim
𝑛→∞

𝑃(𝑋𝑛 = 𝜀)  = 0   → (3)  

Substitute (3) in (2) we get  

lim
𝑛→∞

𝑃(𝑋𝑛 > 𝜀 = 𝑙𝑖𝑚
𝑛→∞

(1 − 𝐹𝑛(𝜀) − 𝑃(𝑋𝑛 = 𝜀)) = 0 = 𝑙𝑖𝑚
𝑛→∞

(1 − 𝐹𝑛(𝜀)) 

⇒ 𝑙𝑖𝑚
𝑛→∞

𝐹𝑛(𝜀) = 0                → (𝐵)  
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Replace 𝜀 by −𝑥 in (𝐴) & 𝜀 𝑏𝑦 𝑥 𝑖𝑛 (𝐵) where 𝑥 > 0, We get 

lim
𝑛→∞

𝐹𝑛(+𝑥) = 0 and lim
𝑛→∞

𝐹𝑛(𝑥) = 1 

∴ 𝑙𝑖𝑚
𝑛→∞

𝐹𝑛(𝑥) = {
0    𝑓𝑜𝑟 𝑥 ≤ 0
1    𝑓𝑜𝑟 𝑥 > 0

    

Conversely, 

Suppose,  𝑙𝑖𝑚
𝑛→∞

𝐹𝑛(𝑥) = {
0    𝑓𝑜𝑟 𝑥 ≤ 0
1    𝑓𝑜𝑟 𝑥 > 0

 

Then for arbitrary 𝜀 > 0 we have 

lim
𝑛→∞

𝑃(𝑋𝑛 < −𝜀) = 𝑙𝑖𝑚
𝑛→∞

𝐹𝑛(−𝜀) = 0  

∴ 𝑙𝑖𝑚
𝑛→∞

𝑃(𝑋𝑛 < −𝜀)  = 0  

⇒ 𝑙𝑖𝑚
𝑛→∞

𝑃(−𝑋𝑛 > 𝜀) = 0     

lim
𝑛→∞

𝑃(𝑋𝑛 > 𝜀) ≤ lim
𝑛→∞

𝑃(𝑋𝑛 ≥ 𝜀)  

  = lim
𝑛→∞

[1 − 𝐹𝑛(𝜀)]  

  = 1 − lim
𝑛→∞

𝐹𝑛(𝜀) 

  = 1 − 1 

  = 0 

∴ 𝑙𝑖𝑚
𝑛→∞

𝑃(𝑋𝑛 > 𝜀) = 0  

⇒ 𝑙𝑖𝑚
𝑛→∞

𝑃(|𝑋𝑛|  > 𝜀) = 0  

Hence the proof. 

Remark. 
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The random variable 𝑋 with a one-point distribution such that 𝑃(𝑋 = 0) = 1  has 

the distribution function 𝐹(𝑥) = {
0    𝑓𝑜𝑟 𝑥 ≤ 0
1    𝑓𝑜𝑟 𝑥 > 0

 

This distribution function is continuous at every point 𝑥 ≠ 0. 

From above theorem. 

For arbitrary 𝜀 > 0 

Since lim
𝑛→∞

𝑃(𝑋𝑛 < −𝜀) = 𝑙𝑖𝑚
𝑛→∞

𝐹𝑛(−𝜀)  

                        = 0 

∴ 𝑙𝑖𝑚
𝑛→∞

𝑃(𝑋𝑛 < −𝜀) = 0  

lim
𝑛→∞

𝑃(𝑋𝑛 > 𝜀) = 1 − 𝑙𝑖𝑚
𝑛→∞

𝐹𝑛(𝜀)  

   = 1 − 1 

lim
𝑛→∞

𝑃(𝑋𝑛 > 𝜀) = 0  

∴ 𝑙𝑖𝑚
𝑛→∞

𝑃(|𝑋𝑛| > 𝜀) = 0  

∴ For every point 𝑥 ≠ 0 the sequence of distribution function 𝐹𝑛(𝑥) converges to 

the distribution function 𝐹(𝑥). 

i.e, The sequence of distribution function 𝐹𝑛(𝑥) of random variable convergent 

stochastically to zero, converges to the distribution function of the one-point 

distribution at every point 𝑥 ≠ 0. 

Since the points 𝑥 ≠ 0 are continuity points of this distribution function, we can 

formulate the preceding result in the following way: 

The sequence {𝑋𝑛} of random variable is stochastically convergent to zero iff the 

sequence {𝐹𝑛(𝑥)} of distribution functions of these random variable is convergent 



 

 

197 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

to the distribution function 𝐹(𝑥) given by 𝐹(𝑥) = {
0    𝑓𝑜𝑟 𝑥 ≤ 0
1    𝑓𝑜𝑟 𝑥 > 0

 at every 

continuity point of the latter. 

Note: 

1. The fact that at the point of discontinuity of 𝐹(𝑥). That is, at the point 𝑥 =

0, the sequence {𝐹𝑛(0)} may not converge to 𝐹(0). 

2. The sequence of random variables{𝑌𝑛} = {𝑋𝑛 − 𝑐} is stochastically 

convergent to zero. 

3. The sequence of random variables{𝑍𝑛} = {𝑋𝑛 − 𝑋} is stochastically 

convergent to zero.  

 

5.2. Bernoulli’s Law of Large numbers 

 

Theorem 5.2 (Bernoulli law of large numbers)  

 Let {𝑌𝑛} be the sequence of random variable with probability functions 

given by 

𝑃 (𝑌𝑛 =
𝑟

𝑛
) = (

𝑛
𝑟
) 𝑝𝑟(1 − 𝑝)𝑛−𝑟  → (1) 

where, 0 < 𝑝 < 1 and 𝑟 can take on the values 0,1,2, ……𝑛 

Let 𝑋𝑛 = 𝑌𝑛 − 𝑝   → (2) 

The sequence of random variable {𝑋𝑛} given by (1) and (2) is stochastically 

convergent to 0.  

i.e, for every 𝜀 > 0, 𝑙𝑖𝑚
𝑛→∞

𝑃(|𝑋𝑛| > 𝜀) = 0. 

Proof. 

The Chebyshev inequality is  
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 𝑃(|𝑋 − 𝑚1| ≥ 𝑘𝜎 ≤
1

𝐾2
 

Put 𝐸(𝑋𝑛) = 0   & 𝜎𝑛 = √𝐷2(𝑋𝑛)  

    = √
𝑃(1−𝑃)

𝑛
 

𝑃(|𝑋𝑛 −𝑚1| ≥ 𝑘𝜎) ≤
1

𝑘2
  

i.e, 𝑃 (|𝑋𝑛| > 𝑘√
𝑃(1−𝑃)

𝑛
) ≤

1

𝑘2
 

where 𝑘 is an arbitrary positive number. 

Let 𝑘 = 𝜀 √
𝑛

𝑝(𝑝−1)
 

𝑃 (|𝑋𝑛| > 𝜀√
𝑛

𝑝(𝑝−1)
 √

𝑃(1−𝑃)

𝑛
) ≤

𝑝(𝑝−1)

𝑛𝜀2
  

𝑃(|𝑋𝑛| > 𝜀) ≤
𝑝(𝑝−1)

𝑛𝜀2
<=

1

𝑛𝜀2
  

⇒ 𝑙𝑖𝑚
𝑛→∞

𝑃(|𝑋𝑛|  > 𝜀) = 0 for every 𝜀 > 0 

 

5.3. The Convergence of a Sequence of Distribution Functions 

 

Definition.  

The sequence {𝐹𝑛(𝑥)} of distribution function of the random variables {𝑋𝑛} 

is called convergent, if there exist, a  distribution function 𝐹(𝑥) such that, at every 

continuity point of 𝐹(𝑥) , the relation  

lim
𝑛→∞

𝐹𝑛(𝑥) = 𝐹(𝑥) 
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is satisfied. The distribution function 𝐹(𝑥) is called the limit distribution 

function. 

Remark.  

Consider the example (1), By theorem 6.3.1, the sequence {𝑋𝑛} of random 

variable defined by 𝑋𝑛 = 𝑌𝑛 −
1

2
 is stochastically convergent to zero. 

∴ The sequence {𝐹𝑛(𝑥)} of their distribution function converges to the distribution 

function 𝐹(𝑥) defined by 𝐹(𝑥) = {
0    𝑓𝑜𝑟 𝑥 ≤ 0
1    𝑓𝑜𝑟 𝑥 > 0

 

This distribution function is discontinuous at 𝑥 = 0. 

i.e., {𝐹𝑛(0)} is not convergent to 𝐹(0). 

consider the subsequence of the sequence {𝐹𝑛(0)} containing only terms with the 

odd indices 𝑛 = 2𝑘 + 1. The random variable 𝑋2𝑛+1 can take on the values  

−
1

2
,
2 − (2𝑘 + 1)

2(2𝑘 + 1)
,
4 − (2𝑘 + 1)

2(2𝑘 + 1)
, … . . ,

2𝑘 + 1 − 4

2(2𝑘 + 1)
,
2𝑘 + 1 − 2

2(2𝑘 + 1)
,
1

2
 

For every 𝑘, half of these terms are each less than zero, the other half greater than 

zero. The probability that 𝑋2𝑘+1 will take on a value less than zero equals 0.5 

∴ For every 𝑘 we have 𝑃(𝑋2𝑘+1 < 0) = 𝐹2𝑘+1(0) = 0.5  

Since, 𝐹(0) = 0, we have 

lim
𝑘→∞

𝐹2𝑘+1 (0) = 0.5 ≠ 𝐹(0)    → (1)  

From (1) it follows that, lim
𝑛→∞

𝐹𝑛(0) ≠ 𝐹(0)       → (1) 

From (1) it follows that, lim
𝑛→∞

𝐹𝑛(0) ≠ 𝐹(0). 
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Example 1. 

Let us consider the sequence {𝑋𝑛} of random variable with the one-point 

distributions given by the formula 

𝑃(𝑋𝑛 = 𝑛) = 1 (𝑛 = 1,2, …… . ) 

The distribution function 𝐹𝑛(𝑥) of 𝑋𝑛 is of the form 

𝐹𝑛(𝑥) = {
0    𝑓𝑜𝑟 𝑥 ≤ 𝑛
1    𝑓𝑜𝑟 𝑥 > 𝑛

 

We have the relation 

lim
𝑛→∞

𝐹𝑛(𝑥) = 0                  (−∞ < 𝑥 < ∞) 

∴ The sequence {𝐹𝑛(𝑥)} convergent to 0 

i.e., The sequence {𝐹𝑛(𝑥)} is not convergent to a distribution function 𝐹𝑛(𝑥). 

 

Remark  

1. Let the sequence {𝐹𝑛(𝑥)} be convergent to the distribution function 𝐹(𝑥). 

Let 𝑎 and 𝑏, where 𝑎 < 𝑏, be two arbitrary continuity points of the limit 

distribution function 𝐹(𝑥). Then we have, 

 𝑙𝑖𝑚
𝑛→∞

𝑃(𝑎 ≤ 𝑋𝑛 < 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) 

For, 

𝑃(𝑎 ≤ 𝑋𝑛 < 𝑏) = 𝐹𝑛(𝑏) − 𝐹𝑛(𝑎)  

lim
𝑛→∞

𝑃(𝑎 ≤ 𝑋𝑛 < 𝑏) = 𝑙𝑖𝑚
𝑛→∞

[𝐹𝑛(𝑏) − 𝐹𝑛(𝑎)]  

      = 𝑙𝑖𝑚
𝑛→∞

𝐹𝑛(𝑏) − 𝑙𝑖𝑚
𝑛→∞

𝐹𝑛(𝑎) 

      = 𝐹(𝑏) − 𝐹(𝑎) 
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(Since, 𝑎 and 𝑏 are continuity points of distribution 𝐹(𝑥) i.e., 𝐹𝑛(𝑏) →

𝐹(𝑏)  & 𝐹𝑛(𝑎) → 𝐹(𝑎))  

2. Let the sequence {𝐹𝑛(𝑥)} be convergent to the distribution function 𝐹(𝑥). 

Let 𝑃𝑛(𝑆) and 𝑃(𝑆) denote the probability function corresponding 

respectively to the distribution function 𝐹𝑛(𝑥) and 𝐹(𝑥). Then we have 

lim
𝑛→∞

𝑃𝑛(𝑆) = 𝑃(𝑆). 

 

Example 2. 

The random variable 𝑋𝑛(𝑛 = 1,2,3,…… ) has the density 𝑓𝑛(𝑥) given by 

𝑓𝑛(𝑥) = {
2𝑛

𝜀
  𝑖𝑓

𝑖

𝑛
−

𝜀

𝑛𝑒𝑛
< 𝑥 <

𝑖

𝑛
(𝑖 = 1,2, … . . , 𝑛)

0                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

where, 0 < 𝜀 < 1. The distribution function 𝐹𝑛(𝑥) of 𝑋𝑛 is 

𝐹𝑛(𝑥) =

{
  
 

  
 
0      𝑖𝑓 𝑥 ≤ 0                                                                
𝑖 − 1

𝑛
   𝑖𝑓 

𝑖 − 1

𝑛
≤ 𝑥 ≤

𝑖

𝑛
−

𝜀

𝑛2𝑛
                                 

𝑖 − 1

𝑛
+
2𝑛 (𝑥 −

𝑖
𝑛
+

𝜀
𝑛2𝑛

)

𝜀
   𝑖𝑓

𝑖

𝑛
−

𝜀

𝑛2𝑛
< 𝑥 <

𝑖

𝑛
1    𝑖𝑓 𝑥 ≥ 1                                                                

 

Thus for every 𝑥 in the  interval 𝐼 = [0,1] we have 

0 ≤ 𝑥 − 𝐹𝑛(𝑥) ≤
1

𝑛
 

By considering the values taken by 𝐹𝑛(𝑥) outside the interval 𝐼, we obtain for 

every real 𝑥 

𝑙𝑖𝑚
𝑛→∞

𝐹𝑛(𝑥) = 𝐹(𝑥) = {

0    𝑓𝑜𝑟 𝑥 ≤ 0        
𝑥    𝑓𝑜𝑟 0 < 𝑥 < 1
1  𝑖𝑓 𝑥 ≥ 1              
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Definition.  

 The sequence of distribution function {𝐹𝑛(𝑥1, …… , 𝑥𝑛)} of random vector 

(𝑋𝑛1 , 𝑋𝑛2 , …… , 𝑋𝑛𝑘) is convergent if there exist a distribution function 

𝐹(𝑥1, 𝑥2, …… , 𝑥𝑘) such that at every one of its continuity points. 

lim
𝑛→∞

𝐹𝑛(𝑥1, 𝑥2, …… , 𝑥𝑘) = 𝐹(𝑥1, 𝑥2, … . . , 𝑥𝑘) 

 

Theorem 5.2. 

Let {𝐹𝑛(𝑥1, 𝑥2, …… , 𝑥𝑘)} (𝑛 = 1,2,…… ) be a sequence of distribution 

functions of random vectors  (𝑋𝑛1 , 𝑋𝑛2 , …… , 𝑋𝑛𝑘) and let 𝐹(𝑥1, 𝑥2, … . . , 𝑥𝑘) and 

𝑃(𝑆) be the distribution function and probability function of a random vector 

(𝑋1, 𝑋2, …… , 𝑋𝑘) respectively. lim
𝑛→∞

𝐹𝑛(𝑥1, 𝑥2, … . . , 𝑥𝑘) = 𝐹(𝑥1, 𝑥2, … . . , 𝑥𝑘) 

holds iff for every function 2(𝑥1, …… . , 𝑥𝑘) continuous on a set 𝑆 satisfying the 

relation 𝑃(𝑆) = 1 

lim
𝑛→∞

𝐻𝑛(𝛼) = 𝐻(𝛼) holds at every continuity point 𝛼 of 𝐻(𝛼) where 𝐻𝑛(𝛼) and 

𝐻(𝛼) are the distribution function of 𝑔(𝑋𝑛1 , 𝑋𝑛2 , …… , 𝑋𝑛𝑘) and 

𝑔(𝑥1, 𝑥2, … . . , 𝑥𝑘) respectively. 

 

5.4. The De Moivre-Laplace Theorem 

 

Let {𝑋𝑛} be a sequence of random variables with the binomial distribution. 

For ever 𝑛 the random variable 𝑋𝑛 can take on the values 0,1, …… . , 𝑛 and its 

probability is  

𝑃(𝑋𝑛 = 𝑟) = (
𝑛
𝑟
) 𝑝𝑟𝑞𝑛−𝑟 

where 0 < 𝑝 < 1 and 𝑞 = 1 − 𝑝 



 

 

203 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

Clearly we have, 𝐸(𝑋𝑛) = 𝑛𝑝;𝐷2(𝑋𝑛) = 𝑛𝑝𝑞 

Consider the sequence {𝑌𝑛} of standardizer random variables 𝑌𝑛 =
𝑋𝑛−𝑛𝑝

√𝑛𝑝𝑞
. 

 

Theorem 5.3.(De Moivre-Laplace theorem) 

 Let {𝐹𝑛(𝑦)} be the sequence of distribution functions of the random 

variables 𝑌𝑛 =
𝑋𝑛−𝑛𝑝

√𝑛𝑝𝑞
, where the 𝑋𝑛 have the binomial distribution given by 

𝑃(𝑋𝑛 = 𝑟) = (
𝑛
𝑟
) 𝑝𝑟𝑞𝑛−𝑟. If 0 < 𝑝 < 1, then for every 𝑦 we have the relation 

lim
𝑛→∞

𝐹𝑛(𝑦) =
1

√2𝜋
∫ 𝑒−

𝑦2

2
𝑦

−∞
𝑑𝑦. 

Proof. 

Given 𝑃(𝑋𝑛 = 𝑟) = (
𝑛
𝑟
) 𝑝𝑟𝑞𝑛−𝑟 

The characteristic function ∅𝑥(𝑡) of 𝑋𝑛 is  

∅𝑥(𝑡) = (𝑞 + 𝑝𝑒𝑖𝑡)
𝑛

 

Given 𝑌𝑛 =
𝑋𝑛−𝑛𝑝

√𝑛𝑝𝑞
 

The characteristic function ∅𝑦(𝑡) of the random variable 𝑌𝑛 is 

∅𝑦(𝑡) = 𝑒
−𝑛𝑝𝑖𝑡

√𝑛𝑝𝑞  (𝑞 + 𝑝𝑒
𝑖𝑡

√𝑛𝑝𝑞)

𝑛

  

= (𝑒
−𝑝𝑖𝑡

√𝑛𝑝𝑞)

𝑛

 (𝑞 + 𝑝𝑒
𝑖𝑡

√𝑛𝑝𝑞)

𝑛

  

= [𝑞𝑒
−𝑝𝑖𝑡

√𝑛𝑝𝑞 +𝑝𝑒
(1−𝑝)

𝑖𝑡

√𝑛𝑝𝑞 ]

𝑛
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∅𝑦(𝑡) = [𝑞𝑒
−𝑝𝑖𝑡

√𝑛𝑝𝑞 + 𝑝𝑒
𝑝𝑖𝑡

√𝑛𝑝𝑞]

𝑛

  → (1)  

Let us expand the function 𝑒𝑖𝑧 in the 𝑛𝑔𝑑 of 𝑧 = 0 according to the Taylor 

formula for 𝑘 terms with the remainder in the peano form, 

𝑒𝑖𝑧 = ∑
(𝑖𝑧)𝑗

𝑗!

𝑘
𝑗=0 + 0(𝑧𝑘)  

We obtain 

𝑝𝑒
𝑝𝑖𝑡

√𝑛𝑝𝑞 = 𝑝 + 𝑖𝑡 √
𝑝𝑞

𝑛
−
𝑞𝑡2

2𝑛
+ 0 (

𝑡2

𝑛
)   → (2)  

𝑞𝑒
−𝑝𝑖𝑡

√𝑛𝑝𝑞 = 𝑞 − 𝑖𝑡√
𝑝𝑞

𝑛
−
𝑝𝑡2

2𝑛
+ 0 (

𝑡2

𝑛
)  → (3)   (∵ 𝑒𝑥𝑝𝑎𝑙𝑖𝑛𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠) 

where for every 𝑡 we have,  

𝑙𝑖𝑚𝑛→∞𝑛0 (
𝑡2

𝑛
) = 0   → (4)  

Sub (2) +(3)  in (1)  

∅𝑦(𝑡) = [𝑞 − 𝑖𝑡√
𝑝𝑞

𝑛
−
𝑝𝑡2

2𝑛
+ 0(

𝑡2

𝑛
) + 𝑜 + 𝑖𝑡 √

𝑝𝑞

𝑛
−
𝑞𝑡2

2𝑛
+ 0(

𝑡2

𝑛
)]
𝑛

  

 = [𝑝 + 𝑞 −
(𝑝+𝑞)𝑡2

2𝑛
+ 0 (

𝑡2

𝑛
)]
𝑛

 

∅𝑦(𝑡) = [1 −
𝑡2

𝑛
+ 0 (

𝑡2

𝑛
)]
𝑛

  

log∅𝑦(𝑡) = 𝑛 log [1 −
𝑡2

2𝑛
+ 0(

𝑡2

𝑛
)] = 𝑛𝑙𝑜𝑔(1 + 𝑧)  

For every fixed 𝑡 for sufficiently large 𝑛, we have |𝑧| < 1 

∴ log∅𝑦(𝑡) =
−𝑡2

2𝑛
+ 𝑛0 (

𝑡2

𝑛
)  

𝑙𝑖𝑚𝑛→∞ log ∅𝑦(𝑡) = 𝑙𝑖𝑚𝑛→∞ (
−𝑡2

2
+𝑚0(

𝑡2

𝑛
))  
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   =
−𝑡2

2
 𝑙𝑖𝑚𝑛→∞𝑛0 (

𝑡2

𝑛
)  

∴ 𝑙𝑖𝑚𝑛→∞ log∅𝑦(𝑡) = 𝑒
−𝑡2

2      (𝑢𝑠𝑖𝑛𝑔 (4))  

𝑙𝑖𝑚𝑛→∞∅𝑦(𝑡) = 𝑒−
𝑡2

2   

∴ The sequence of characteristic function ∅𝑦(𝑡) of the standardized random 

variables 𝑌𝑛 =
𝑋𝑛−𝑛𝑝

√𝑛𝑝𝑞
 convers as 𝑛 → ∞ to the characteristic function of a random 

variable with a normal distribution whose distribution function is 

1

√2𝜋
 ∫ 𝑒−

𝑦2

2  
𝑦

−∞
𝑑𝑦 

∴ 𝑙𝑖𝑚𝑛→∞𝐹𝑛(𝑦) =
1

√2𝜋
 ∫ 𝑒−

𝑦2

2  
𝑦

−∞
𝑑𝑦  

Hence proved. 

Remark. 

Let 𝑦1 and 𝑦2 be two arbitrary points with 𝑦1 < 𝑦2. 

We know that, 𝑙𝑖𝑚𝑛→∞𝐹𝑛(𝑦) =
1

√2𝜋
 ∫ 𝑒−

𝑦2

2  
𝑦

−∞
𝑑𝑦 → (1)  

From the above relation, 

 𝑙𝑖𝑚𝑛→∞𝑃(𝑦1 < 𝑌 < 𝑦2) = 𝑙𝑖𝑚𝑛→∞[𝐹𝑛(𝑦2) − 𝐹𝑛(𝑦1)] 

     = 𝑙𝑖𝑚𝑛→∞𝐹𝑛(𝑦2) − 𝑙𝑖𝑚𝑛→∞𝐹𝑛(𝑦1) 

     =
1

√2𝜋
 ∫ 𝑒−

𝑦2

2  
𝑦2
−∞

𝑑𝑦 −
1

√2𝜋
 ∫ 𝑒−

𝑦2

2  
𝑦1
−∞

𝑑𝑦 

     =
1

√2𝜋
 ∫ 𝑒−

𝑦2

2  
𝑦2
𝑦1

𝑑𝑦 

∴ 𝑙𝑖𝑚𝑛→∞𝑃(𝑦1 < 𝑌 < 𝑦2) =
1

√2𝜋
 ∫ 𝑒−

𝑦2

2  
𝑦2
𝑦1

𝑑𝑦 → (2)  
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𝑃(𝑦1 < 𝑌 < 𝑦2) = 𝑃 (𝑦1 <
𝑋𝑛−𝑛𝑝

√𝑛𝑝𝑞
< 𝑦2)  

   = 𝑃(𝑦1√𝑛𝑝𝑞 + 𝑛𝑝 < 𝑋𝑛 < 𝑦2√𝑛𝑝𝑞 + 𝑛𝑝) 

∴ 𝑙𝑖𝑚𝑛→∞𝑃(𝑦1√𝑛𝑝𝑞 + 𝑛𝑝 < 𝑋𝑛 < 𝑦2√𝑛𝑝𝑞 + 𝑛𝑝) =
1

√2𝜋
 ∫ 𝑒−

𝑦2

2  
𝑦2
𝑦1

𝑑𝑦  

Let 𝑥1 = 𝑦1√𝑛𝑝𝑞 + 𝑛𝑝; 𝑥2 = 𝑦2√𝑛𝑝𝑞 + 𝑛𝑝  → (3) 

𝑃(𝑥1 < 𝑋𝑛 < 𝑥2) ≅ ∫ 𝑒−
𝑦2

2  
𝑦2
𝑦1

𝑑𝑦    where 𝑦1 and 𝑦2 are determined by (3)  

We say that the random variable 𝑋𝑛 has a asymptotically normal distribution 

𝑁(𝑛𝑝; √𝑛𝑝𝑞). 

Replacing 𝑦1 and 𝑦2 with  

𝑦1 +
1

2√𝑛𝑝𝑞
 and 𝑦2 −

1

2√𝑛𝑝𝑞
 respectively we get a better approximation. 

 

Example 1 

 We throw a coin 𝑛 = 100times. We assign the number 1 to the appearance 

of heads and the number 0 to the appearance of tails. The probability of each of 

these events is equal to 𝑝 = 𝑞 = 0.5. what is the probability that heads will appear 

more than 50 times and less than 60 times? 

Solution. 

The random variable 𝑋𝑛 take on values from 0 𝑡𝑜 100. 

Given, 𝑛 = 100; 𝑝 = 0.5; 𝑞 = 0.5  

 𝐸(𝑋𝑛) = 𝑛𝑝 = 100 × 0.5 = 50;𝐷2(𝑋𝑛) = 𝑛𝑝𝑞 

     = 100 × 0.5 × 0.5 

     = 25 
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∴ 𝐸(𝑋𝑛) = 50  & 𝐷2(𝑋𝑛) = 25. 

We know that, 

𝑃(𝑥1 < 𝑋𝑛 < 𝑥2) ≅
1

√2𝜋
 ∫ 𝑒−

𝑡2

2  
𝑦2
𝑦!

𝑑𝑡  

Where 𝑥1 = 𝑦1√𝑛𝑝𝑞 + 𝑛𝑝 & 𝑥2 = 𝑦2√𝑛𝑝𝑞 + 𝑛𝑝 

Here, 𝑥1 = 50 and 𝑥2 = 60 

𝑦1 =
50−50

5
              𝑦2 =

60−50

5
 

𝑦1 = 0   𝑦2 = 2 

𝑃(50 < 𝑋𝑛 < 60) ≅
1

√2𝜋
 ∫ 𝑒−

𝑡2

2  
2

0
𝑑𝑡  

   ≅
1

√2𝜋
 ∫ 𝑒−

𝑡2

2  
1.9

0.1
𝑑𝑡 

   ≅
1

√2𝜋
 ∫ 𝑒−

𝑡2

2  
1.9

−∞
𝑑𝑡 − ∫ 𝑒−

𝑡2

2  
0.1

−∞
𝑑𝑡 

   ≅ ∅(1.9) − ∅(0.1) 

   = 0.97283 − 0.539828 

   = 0.431455 

𝑃(50 < 𝑋𝑛 < 60) ≅ 0.4315. 

  

Remark.  

1. From de Moivre-Laplace theorem we obtain theorem for the sequence of 

random variables  

𝑈𝑛 =
𝑋𝑛
𝑛

 

Where 𝑋𝑛 has the binomial distribution given by  
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 𝑃(𝑋𝑛 = 𝑟) = (
𝑛
𝑟
) 𝑝𝑟𝑞𝑛−𝑟 

Since, 𝐸(𝑈𝑛) = 𝑝  & 𝐷
2(𝑈𝑛) =

𝑝𝑞

𝑛
 

𝑍𝑛 =
𝑈𝑛−𝑃

√
𝑝𝑞

𝑛

=
𝑋𝑛
𝑛
−𝑝

√
𝑝𝑞

𝑛

=
𝑋𝑛−𝑛𝑝 

𝑛√
𝑝𝑞

𝑛

  

 =
𝑋𝑛−𝑛𝑝

√𝑛𝑝𝑞
= 𝑌𝑛 

∴ 𝑍𝑛 = 𝑌𝑛  

Since, the sequence {𝐹𝑛(𝑦)} of distribution function of 𝑌𝑛 satisfies 

𝑙𝑖𝑚𝑛→∞𝐹𝑛 =
1

√2𝜋
∫ 𝑒−

𝑦2

2
𝑦

−∞
 𝑑𝑦 

∴ for the sequence {𝐹𝑛(𝑧)} of the distribution function of 𝑧𝑛 

𝑙𝑖𝑚𝑛→∞𝐹𝑛(𝑧) =
1

√2𝜋
∫ 𝑒−

𝑧2

2
𝑧

−∞
 𝑑𝑧  

2. For every pair of constants 𝑧1 and 𝑧2 where 𝑧1 < 𝑧2. 

𝑙𝑖𝑚𝑛→∞𝑃 (𝑧1 < √
𝑛

𝑝𝑞
 (𝑈𝑛 − 𝑝) < 𝑧2) =

1

√2𝜋
∫ 𝑒−

𝑧2

2
𝑧2
𝑧1

 𝑑𝑧  

Let  

 𝑢1 = 𝑧1√
𝑝𝑞

𝑛
+ 𝑝        𝑢2 = 𝑧2√

𝑝𝑞

𝑛
+ 𝑝     → (1) 

 𝑃(𝑢1 < 𝑈𝑛 < 𝑢2) ≅
1

√2𝜋
∫ 𝑒−

𝑧2

2
𝑧2
𝑧1

 𝑑𝑧 → (2) 

Where 𝑧1 and 𝑧2 are determined by (1)  

The random variable 𝑈𝑛satisfying the relation (2) has  an asymptotically 

normal distribution 𝑁 (𝑝; √
𝑝𝑞

𝑛
). 

 

Example  

 A box contains a collection of IBM cards corresponding to the workers 

from some branch of industry of the workers 20% are minors and 80% adults. We 
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select one IBM card in a random way and mark the age given in this card. Before 

choosing the next card, we return the first one to the box, so that the probability 

of selecting the card corresponding to a minor remains 0.2. we observe ‘n’ cards 

in this manner. What value should ‘n’ have in order that the probability will be 

0.95 that the frequency of cards corresponding to minor lies between 0.18 and 

0.22? 

Solution.  

 Let 𝑈𝑛 be the frequency of the appearance of the card corresponding to a 

minor. 

𝐸(𝑈𝑛) = 𝑝  and 𝐷2(𝑈𝑛) =
𝑝𝑞

𝑛
 

Here, 𝑝 = 0.2       𝑞 = 1 − 𝑝 = 1 − 0.2 = 0.8 

𝐸(𝑈𝑛) = 0.2      𝐷2(𝑈𝑛) =
0.16

𝑛
  

√𝐷2(𝑈𝑛) =
0.4

√𝑛
  

𝑃(𝑢1 < 𝑈𝑛 < 𝑢2) ≅
1

√2𝜋
∫ 𝑒−

𝑧2

2
𝑧2
𝑧1

 𝑑𝑧  

Where 𝑢1 = 𝑧1√
𝑝𝑞

𝑛
+ 𝑝      𝑢2 = 𝑧2√

𝑝𝑞

𝑛
+ 𝑝 

Here, 𝑢1 = 0.18    𝑎𝑛𝑑 𝑢2 = 0.22 

0.18 = 𝑧1 (
0.4

√𝑛
) + 0.2        𝑎𝑛𝑑  0.22 = 𝑧2 (

0.4

√𝑛
) + 0.2  

0.18 − 0.2 = 𝑧1 (
0.4

√𝑛
)                             𝑧2 = (0022 − 0.2) (

√𝑛

0.4
) 

0.16

0.4
× √𝑛 = 𝑧1                                𝑧2 = (

0.20

0.4 
) √𝑛 

 𝑧1 =
1.6

4
√𝑛                                                   𝑧2 =

2

4
√𝑛 
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 𝑧1 = 0.4√𝑛     𝑧2 = 0.5√𝑛 

𝑃(0.18 < 𝑈𝑛 < 0.22) ≅
1

√2𝜋
∫ 𝑒−

𝑧2

2

0.5√𝑛

0.4√𝑛

 𝑑𝑧                   → (1) 

We know that,  

𝑙𝑖𝑚𝑛→∞𝑃 (𝑧1 < √
𝑛

𝑝𝑞
(𝑈𝑛 − 𝑝) < 𝑧2) =

1

√2𝜋
∫ 𝑒−

𝑧2

2
𝑧2
𝑧1

 𝑑𝑧  

𝑃(0.18 < 𝑈𝑛 < 0.22) = 𝑝(
−0.02

0.4

√𝑛

<
𝑈𝑛 − 0.2

0.4

√𝑛

<
0.02

0.4

√𝑛

) 

    = 𝑝(−0.05√𝑛 <
𝑈𝑛−0.2

0.4
√𝑛 < 0.05√𝑛) 

    ≅ 0.95 

∴ 𝑃(0.18 < 𝑈𝑛 < 0.22) ≅ 0.95    → (2) 

From (1) and (2) 

1

√2𝜋
∫ 𝑒−

𝑧2

2
0.5√𝑛

0.4√𝑛
 𝑑𝑧 ≅ 0.95  

From normal table, 

0.5√𝑛 ≅ 1.96  

√𝑛 ≅
1.96

0.5
  

𝑛 ≅ 1537. 

  

5.5. The Lindeberg-Levy Theorem 

Consider a sequence {𝑋𝑘} (𝑘 = 1,2, … . . ) of equally distributed, 

independent random variables whose moment of the second order exists. 
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For every k denote 

𝐸(𝑋𝑘) = 𝑚;𝐷
2(𝑋𝑘) = 𝜎2  

Consider the random variable 
1

𝑛
 defined by  

𝑌𝑛 = 𝑋1 + 𝑋2 +⋯…+ 𝑋𝑛 

𝐸(𝑌𝑛) = 𝑛𝑚  and 𝐷2(𝑌𝑛) = 𝑛𝜎2 

Let 𝑍𝑛 =
𝑌𝑛−𝑚𝑛

𝜎√𝑛
…..(A). 

 

Theorem 5.4. (Lindeberg – Levy theorem) 

 If 𝑋1, 𝑋2, … .. are independent random variables with the same distribution, 

whose standard deviation 𝜎 ≠ 0 exists, then the sequence {𝐹𝑛(𝑧)} of distribution 

functions of the random variables 𝑍𝑛, given by formulas  

𝑧𝑛 =
𝑌𝑛−𝑚𝑛

𝜎√𝑛
 and 𝑌𝑛 = 𝑋1 + 𝑋2 +⋯…+ 𝑋𝑛, 

satisfies, for ever 𝑧, the equality 

𝑙𝑖𝑚𝑛→∞𝐹𝑛(𝑧) =
1

√2𝜋
∫ 𝑒−

𝑧2

2

𝑧

−∞

 𝑑𝑧 

Proof. 

let 𝑧𝑛 =
𝑌𝑛−𝑚𝑛

𝜎√𝑛
 can be written in the form 

𝑧𝑛 =
1

𝜎√𝑛
 ∑ (𝑋𝑘 −𝑚)

𝑛
𝑘=1   

All the random variable 𝑋𝑘 −𝑚 have the same distribution, hence the 

characteristic function ∅𝑧(𝑡) of 𝑍𝑛 is  

∅𝑧(𝑡) = [∅𝑥 (
𝑡

𝜎√𝑛
)]
𝑛

  → (1) 
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Assume that the existence of the first and second moments we have, 

𝐸(𝑋𝑘 −𝑚) = 0      𝑎𝑛𝑑 𝐷2(𝑋𝑘 −𝑚) = 𝜎2  

Expand the function ∅𝑧(𝑡) in a neighbourhood of the point 𝑡 = 0 according to 

the MacLaurin formula 

∅𝑥(𝑡) = 1 −
1

2
 𝜎2𝑡2 + 0(𝑡2)  

∅𝑥 (
𝑡

𝜎√𝑛
) = 1 −

1

2
𝜎2

𝑡2

𝜎2𝑛
+ 0(

𝑡2

𝜎2𝑛
)  

∅𝑥 (
𝑡

𝜎√𝑛
) = 1 −

1

2

𝑡2

𝑛
+ 0(

𝑡2

𝑛
)                                     → (2)  

Substitute (2) in (1) 

∅𝑧(𝑡) = [1 −
1

2

𝑡2

𝑛
+ 0(

𝑡2

𝑛
)]
𝑛

                → (3)  

where for every 𝑡 we have, 

𝑙𝑖𝑚𝑛→∞𝑛0 (
𝑡2

𝑛
) = 0                             → (4)  

Let 𝑢 = −
𝑡2

2𝑛
+ 0(

𝑡2

𝑛
) 

(2) ⇒ ∅𝑧(𝑡) = [1 + 𝑢]𝑛 

log ∅𝑧(𝑡) = 𝑛 log(1 + 𝑢)    

  = 𝑛 [−
𝑡2

2𝑛
+ 0(

𝑡2

𝑛
)] 

 log ∅𝑧 (𝑡) = −
𝑡2

2
+ 𝑛0 (

𝑡2

𝑛
) 

𝑙𝑖𝑚𝑛→∞ log ∅𝑧(𝑡) = 𝑙𝑖𝑚𝑛→∞ [−
𝑡2

2
+ 𝑛0(

𝑡2

𝑛
)]  

   = −
𝑡2

2
+ 𝑙𝑖𝑚𝑛→∞𝑛0 (

𝑡2

2
) 
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𝑙𝑖𝑚𝑛→∞ log ∅𝑧(𝑡) = −
𝑡2

2
     (𝑢𝑠𝑖𝑛𝑔 (4))  

𝑙𝑖𝑚𝑛→∞∅𝑧(𝑡) = 𝑒−
𝑡2

2   

𝑒−
𝑡2

2  is the characteristic function of a random variable with the normal 

distribution. 

[by theorem, if the sequence of characteristic function {∅𝑛(𝑡)} converges at every 

point 𝑡(−∞ < 𝑡 < +∞) to a function ∅(𝑡) continuous in same interval |𝑡| < 𝑐, 

then the sequence {𝐹𝑛(𝑥)} of corresponding distribution function converges to the 

distribution function 𝐹(𝑥) which corresponds to the characteristic function ∅(𝑡) 

∴ 𝑙𝑖𝑚𝑛→∞𝐹𝑛(𝑧) =
1

√2𝜋
∫ 𝑒−

𝑧2

2
𝑧

−∞
 𝑑𝑧  

 

Remark.  

 Let 𝑧1 and 𝑧2 be two arbitrary numbers with 𝑧1 < 𝑧2. By relation in the last 

theorem we obtain 

 𝑙𝑖𝑚𝑛→∞𝑃(𝑧1 < 𝑍𝑛 < 𝑧2) = 𝑙𝑖𝑚𝑛→∞[𝐹𝑛(𝑧2) − 𝐹𝑛(𝑧1)] 

                                                =
1

√2𝜋
∫ 𝑒−

𝑧2

2
𝑧2
𝑧1

 𝑑𝑧 ….(5) 

From formula (A) we obtain 

𝑝(𝑧1 < 𝑍𝑛 < 𝑧2) = 𝑃 (𝑧1 < 
𝑌𝑛−𝑚𝑛

𝜎√𝑛
< 𝑧2)  

   = 𝑃(𝑧1𝜎√𝑛 + 𝑛𝑚 < 𝑌𝑛 < 𝑧2𝜎√𝑛 + 𝑛𝑚)  

Thus, we obtain from formula (5)  

 𝑙𝑖𝑚𝑛→∞𝑃(𝑧1𝜎√𝑛 + 𝑛𝑚 < 𝑌𝑛 < 𝑧2𝜎√𝑛 + 𝑛𝑚) =
1

√2𝜋
∫ 𝑒−

𝑧2

2
𝑧2
𝑧1

 𝑑𝑧…(6) 
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Let  

𝑦1 = 𝑧1𝜎√𝑛 + 𝑛𝑚,   𝑦2 = 𝑧2𝜎√𝑛 + 𝑛𝑚….(7) 

Now we can write formula (6) in the asymptotic form 

𝑃(𝑦1 < 𝑌𝑛 < 𝑦2) ≅
1

√2𝜋
∫ 𝑒−

𝑧2

2

𝑧2

𝑧1

 𝑑𝑧 

where 𝑧1 and 𝑧2 are determined by relation (7). Thus, the random variable 𝑌𝑛 

defined by formula 𝑌𝑛 = 𝑋1 + 𝑋2 +⋯…+ 𝑋𝑛 has an asymptotically normal 

distribution 𝑁(𝑛𝑚; 𝜎√𝑛). 

 

Example 1.  

 Suppose that the random variables {𝑋𝑘}(𝑘 = 1,2,… . . ) are independent 

and each of them has the same two – point distribution, i.e, for every 𝑘 we have 

𝑃(𝑋𝑘 = 1) = 𝑝; 𝑃(𝑋𝑘 = 0) = 1 − 𝑝 where 0 < 𝑝 < 1 

Consider the random variable 𝑌𝑛 = 𝑋1 + 𝑋2 +⋯ . . +𝑋𝑛 

𝐸(𝑋𝑘) = 𝑝 and 𝐷2(𝑋𝑘) = 𝑝𝑞 

By de Moivre-Laplace limit theorem that 𝑌𝑛 has an asymptotically normal 

distribution 𝑁(𝑛𝑝;√𝑛𝑝𝑞). 

 

Remark.  

 De Moivre-Laplace limit theorem is a particular case of Lindeberg-Levy 

theorem. 
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Example 2. The random variable 𝑋𝑛(𝑛 = 1,2,…… ) are independent and each of 

them has the Poisson distribution given by 𝑃(𝑋𝑛 = 𝑟) =
2𝑟

𝑟!
 𝑒−2(𝑟 =

0,1,2, …… ). Find the probability that the sum 𝑌100 = 𝑋1 + 𝑋2 +⋯ . . +𝑋100 is 

greater than 190 and less than 210. 

Solution. 

 𝑌100 = 𝑋1 + 𝑋2 +⋯…+ 𝑋100 

The random variable 𝑌100 has approximately the normal distribution 

𝑁(200,10√2).    (∵ 𝑌𝑛~𝑁(𝑚𝑛; 𝜎√𝑛)) 

Since ,each of the random variable 𝑋𝑛 has 𝜎 = √2 and expected value 𝑚 = 2. 

We know that, 𝑃(𝑦1 < 𝑌𝑛 < 𝑦2) ≅
1

√2𝜋
∫ 𝑒−

𝑧2

2
𝑧2
𝑧1

 𝑑𝑧 

Where, 𝑦1 = 𝑧1𝜎√𝑛 +𝑚𝑛,         𝑦2 = 𝑧2𝜎√𝑛 + 𝑛𝑚 

Here, 𝑦1 = 190 and 𝑦2 = 210 𝑎𝑛𝑑 𝑛 = 100 

Now,  

190 = 𝑧1𝜎√𝑛 +𝑚𝑛       

𝑧1 =
190−𝑚𝑛

𝜎√𝑛
       

      =
190−200

√2×10
       

𝑧2 =
−10

√2×10
         

𝑧2 =
−1

√2
         

𝑧2 = −0.707       

and 



 

 

216 Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli  

Man 

210 = 𝑧2𝜎√𝑛 +𝑚𝑛 

𝑧2 =
210 −𝑚𝑛

𝜎√𝑛
 

=
210 − 200

√2 × 10
 

=
10

√2 × 10
 

𝑧2 =
1

√2
 

𝑧2 = 0.707 

∴ 𝑃(190 < 𝑌100 < 210) = 𝑃 (−0.707 <
𝑌100−200

10√2
< 0.707)  

    = ∅(0.707) − ∅(−0.707) 

    = ∅(0.707) − (1 − ∅(0.707)) 

    = 2∅(0.707) − 1 

    = 2 × 0.758036 − 1 

    = 1.516 − 1 

    = 0.516 

∴ 𝑃(190 < 𝑌100 < 210) ≅ 0.52. 

  

Theorem 5.5. 

 Suppose that the random variable 𝑋1, 𝑋2, …… are independent and the same 

distribution with standard deviation 𝜎 ≠ 0. Let the random variable 𝑈𝑛 defined 

by 
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𝑈𝑛 =
𝑋1 + 𝑋2 +⋯…+ 𝑋𝑛

𝑛
 

Furthermore, let 𝐹𝑛(𝑣) be the distribution function of random variable 𝑉𝑛 

 Defined as  

𝑉𝑛 =
𝑈𝑛 − 𝐸(𝑈𝑛)

√𝐷2(𝑈𝑛)
 

Then the sequence {𝐹𝑛(𝑣)} satisfies the relation 

𝑙𝑖𝑚𝑛→∞𝐹𝑛(𝑣) =
1

√2𝜋
∫ 𝑒−

𝑣2

2

𝑣

−∞

 𝑑𝑣 

Proof. 

Here, 𝐸(𝑈𝑛) = 𝑚 and 𝐷2(𝑈𝑛) =
𝜎2

𝑛
 

 𝑉𝑛 =
𝑈𝑛−𝐸(𝑈𝑛)

√𝐷2(𝑈𝑛)
 

  =
1

𝑛
∑ 𝑋𝑘−𝑚
𝑛
𝑘=1

𝜎

√𝑛

𝑡 

  =
∑ 𝑋𝑘−𝑚
𝑛
𝑘=1 𝑛

𝜎√𝑛
 

  = 𝑧𝑛 

where the random variable 𝑧𝑛 =
∑ 𝑋𝑘−𝑚
𝑛
𝑘=1 𝑛

𝜎√𝑛
 by theorem Lindeberg-Levy, 

The sequence {𝐹𝑛(𝑧)} satisfies relation 𝑙𝑖𝑚𝑛→∞𝐹𝑛(𝑧) =
1

√2𝜋
∫ 𝑒−

𝑧2

2
𝑧

−∞
 𝑑𝑧 

∴ The sequence {𝐹𝑛(𝑣)} satisfies 𝑙𝑖𝑚𝑛→∞𝐹𝑛(𝑣) =
1

√2𝜋
∫ 𝑒−

𝑣2

2
𝑣

−∞
 𝑑𝑣 

Hence the proof. 
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Remark.  

Let 𝑣1 and 𝑣2 be two arbitrary number with 𝑣1 < 𝑣2. 

 𝑙𝑖𝑚𝑛→∞𝑝(𝑣1 < 𝑉𝑛 < 𝑣2) =
1

√2𝜋
∫ 𝑒−

𝑣2

2
𝑣2
𝑣1

 𝑑𝑣 

Let 𝑢1 =
𝑣1𝜎

√𝑛
+𝑚;    𝑢2 =

𝑣2𝜎

√𝑛
+𝑚   → (1) 

𝑃(𝑢1 < 𝑈𝑛 < 𝑢2) ≅
1

√2𝜋
∫ 𝑒−

𝑣2

2
𝑣2
𝑣1

 𝑑𝑣 , where  𝑣1 and 𝑣2 are determined from (1)  

∴ The random variable 𝑈𝑛 has an asymptotically normal distribution 𝑁(𝑚;
𝜎

√𝑛
). 

 

Example 3.  

The random variables 𝑋1, 𝑋2, …… are independent and have the uniform 

distribution defined by 

𝑓(𝑥) =  {
1    𝑓𝑜𝑟 𝑥 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [0,1]
0   𝑓𝑜𝑟  𝑥 < 0   𝑥 > 1                 

 

Consider the random variable 𝑌𝑛 =
𝑋1+𝑋2+⋯..𝑋𝑛

𝑛
, for n=48 compute the probability 

than 𝑌𝑛 will be smaller than 0.4. 

Solution. 

𝑓(𝑥) = {
1   𝑥 ∈ [0,1]

0   𝑓𝑜𝑟 𝑥 < 0  𝑥 > 1
 

Clearly, 𝑚 =
1

2
,   𝜎 =

1

√12
    (find using 𝐸(𝑋) formula) 

By theorem 6.8.2, 𝑌𝑛~𝑁 (𝑚;
𝜎

√𝑛
) 

Here, 𝑛 = 48 

To find 𝑃(𝑌𝑛 < 0.4) 
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𝑃(𝑌𝑛 < 0.4) = 𝑝(
𝑌𝑛−

1

2
1

√576

<
0.4−

1

2
1

√576

)  

  = 𝑝(
𝑌𝑛−

1

2
1

24

< −2.4) 

  ≅ ∅(−2.4) 

  ≅ 0.0082 

 

5.6. Poisson’s Chebysheve’s and Khintchin’s Laws of Large Numbers 

 

Consider first a sequence of random variables {𝑋𝑘} (𝑘 = 1,2, … . ); the only 

assumption we make is that for every 𝑘 first two moments exist, that is, 

𝐸(𝑋𝑘) = 𝑚𝑘 , 𝐸[(𝑋𝑘 −𝑚𝑘)
2] = 𝜎𝑘

2 

 

Theorem 5.6. (Chebyshev's Theorem) 

 Let {𝑋𝑘} (𝑘 = 1,2, …… ) be an arbitrary sequence of random variables with 

variances 𝜎𝑘
2. If the Markov condition 𝑙𝑖𝑚𝑘→∞𝜎𝑘

2 = 0 is satisfied, the sequence 

{𝑋𝑘 −𝑚𝑘} is stochastically convergent to zero. 

Proof. 

Chebyshev's inequality, we have or every 𝑘 and 𝜀 > 0 

𝑃(|𝑋𝑘 −𝑚𝑘| ≥ 𝜀) ≤
𝜎𝑘
2

𝜀2
…...(1) 

If the Markov condition 

𝑙𝑖𝑚𝑘→∞𝜎𝑘
2 = 0……(2) 

is satisfied, from formula (1) we obtain 
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𝑙𝑖𝑚𝑘→∞𝑃(|𝑋𝑘 −𝑚𝑘| ≥ 𝜀) = 0. 

Thus, the sequence {𝑋𝑘 −𝑚𝑘} is stochastically convergent to zero. 

 

Corollary 

Let {𝑋𝑘} (𝑘 = 1,2, … . . ) be a sequence of random variables pairwise 

uncorrelated and let 𝐸(𝑋𝑘) = 𝑚𝑘 and 𝐷2(𝑋𝑘) = 𝜎𝑘
2. If condition 

𝑖𝑚𝑛→∞
1

𝑛2
 ∑ 𝜎𝑘

2 = 0𝑛
𝑘=1  is satisfied, then the sequence 

{𝑌𝑛 −
𝑚1 +𝑚2 +⋯+𝑚𝑛 

𝑛
}       (𝑛 = 1,2,… . . ) 

is stochastically convergent to 0. 

Proof. 

Suppose that the 𝑋𝑘 considered in the last theorem are pairwise uncorrelated. 

Consider the random variable 

𝑌𝑛 =
𝑋1 + 𝑋2 +⋯ .+𝑋𝑛

𝑛
 

We have 

𝐸(𝑌𝑛) =
1

𝑛
 ∑ 𝑚𝑘

𝑛

𝑘=1
 

Since the 𝑋𝑘 are pairwise uncorrelated, we have 

𝐷2(𝑌𝑛) =
1

𝑛2
 ∑ 𝜎𝑘

2
𝑛

𝑘=1
 

If  

𝑙𝑖𝑚𝑛→∞

1

𝑛2
 ∑ 𝜎𝑘

2 = 0
𝑛

𝑘=1
, 
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Then by the Chebyshev theorem, it follows that  

 𝑙𝑖𝑚𝑛→∞𝑃[|𝑌𝑛 − 𝐸(𝑌𝑛)| ≥ 𝜀] = 0 

Thus, then the sequence 

{𝑌𝑛 −
𝑚1 +𝑚2 +⋯+𝑚𝑛 

𝑛
}       (𝑛 = 1,2,… . . ) 

is stochastically convergent to 0. 

 

Remark 

We considered the Poisson scheme and the generalized binomial 

distribution associated with it. In this scheme we consider the sum of 𝑛 

independent random variables 𝑋𝑘  (𝑘 = 1,2, … . . , 𝑛) with the zero-one 

distribution, where 𝑃(𝑋𝑘 = 0) = 1 − 𝑝𝑘, 𝑃(𝑋𝑘 = 1) = 𝑝𝑘. Since 𝐷2(𝑋𝑘) =

𝑝𝑘(1 − 𝑝𝑘) ≤
1

4
, condition 𝑙𝑖𝑚𝑛→∞

1

𝑛2
 ∑ 𝜎𝑘

2 = 0𝑛
𝑘=1   is satisfied. Thus the 

corollary of the Chebyshev theorem takes a form which could be called the 

Poisson law of large numbers. 

 

Theorem 5.7. 

 If the random variable 𝑌𝑛 is the arithmetic mean of the random variables 

𝑋𝑘 in the Poisson scheme, 

𝑌𝑛 =
𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

𝑛
,  

then the sequence 

{𝑌𝑛 −
𝑝1+𝑝2+⋯+𝑝𝑛

𝑛
}     (𝑛 = 1,2, …… )] 

is stochastically convergent to 0. 
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Theorem 5.8.( Chebyshev law of large numbers) 

 Let {𝑋𝑘} (𝑘 = 1,2, …… ) be a sequence of pairwise un-correlated random 

variables with the same expected value and the same standard deviation, and let 

𝑌𝑛 be given by formula 𝑌𝑛 =
𝑋1+𝑋2+⋯+𝑋𝑛

𝑛
. Then the sequence {𝑌𝑛} is 

stochastically convergent to the common expected value 𝑚 of the random 

variables 𝑋𝑘. 

Proof. 

 Let us now consider the case where the pairwise uncorrelated random 

variables 𝑋𝑘(𝑘 = 1,2, … . . ) have the same expected value and the same standard 

deviation. Thus, for every  𝑘 we can write 

𝐸(𝑋𝑘) = 𝑚,      𝐷
2(𝑋𝑘) = 𝜎2 

If we introduce the random variables 𝑌𝑛 defined by 𝑌𝑛 =
𝑋1+𝑋2+⋯+𝑋𝑛

𝑛
 we have 

𝐸(𝑌𝑘) = 𝑚,     𝐷2(𝑌𝑛) = 𝜎
2/𝑛 

Thus  

𝑙𝑖𝑚𝑛→∞𝐷
2(𝑌𝑛) = 0 

According to the corollary of the Chebyshev theorem, the sequence {𝑌𝑛 −𝑚} is 

stochastically convergent to zero. 

 

Theorem 5.9.( Khintchin’s law of large numbers) 

 Let {𝑋𝑘} (𝑘 = 1,2, … . . ) be a sequence of independent random variables 

with the same distribution and wit expected value 𝐸(𝑋𝑘) = 𝑚. Then the sequence 

{𝑌𝑛}, where 
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𝑌𝑛 =
𝑋1 + 𝑋2 +⋯+𝑋𝑛

𝑛
 

is stochastically convergent to 𝑚. 

Proof. 

Let ∅(𝑡) be the common characteristic function of the random variables 𝑋𝑘. 

By the independence of the 𝑋𝑘, the characteristic function of 𝑌𝑛 is 

[∅ (
𝑡

𝑛
)]
𝑛

….(1) 

Since the expected value 𝑚 exists, we can expand ∅(𝑡) in the neighborhood of 

𝑡 = 0 according to the MacLaurin formula, 

∅(𝑡) = 1 +𝑚𝑖𝑡 + 𝑜(𝑡)…… (2) 

Substituting the expression (2) into (1), we obtain 

[∅ (
𝑡

𝑛
)]
𝑛

= [1 +
𝑚𝑖𝑡

𝑛
+ 𝑜 (

𝑡

𝑛
)]
𝑛

 

Proceeding as in the proof of the de Moivre-Laplace theorem, we obtain 

𝑙𝑖𝑚𝑛→∞ [∅ (
𝑡

𝑛
)]
𝑛

= 𝑒𝑚𝑖𝑡   …… (3) 

The right-hand side of formula (3) is the characteristic function of the random 

variable 𝑌 with the one-point distribution such that 

𝑃(𝑌 = 𝑚) = 1 

By the Levy-Cramer theorem, the sequence {𝐹𝑛(𝑦)} of distribution functions of 

𝑌𝑛 converges to the distribution function of the random variable 𝑌. 

 𝑇hus, by theorem 6.2.1, the sequence {𝑌𝑛} is stochastically convergent to 𝑚. 
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